Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,93 +1,3 @@
|
|
1 |
-
# import chromadb
|
2 |
-
# from chromadb.utils import embedding_functions
|
3 |
-
# from chromadb.config import Settings
|
4 |
-
# from sentence_transformers import SentenceTransformer
|
5 |
-
# from transformers import pipeline
|
6 |
-
# import streamlit as st
|
7 |
-
# import fitz # PyMuPDF for PDF parsing
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
# # Configure ChromaDB with persistent SQLite database
|
12 |
-
# config = Settings(
|
13 |
-
# persist_directory="./chromadb_data",
|
14 |
-
# chroma_db_impl="sqlite",
|
15 |
-
# )
|
16 |
-
|
17 |
-
# # Initialize persistent client with SQLite
|
18 |
-
# def setup_chromadb():
|
19 |
-
# client = chromadb.PersistentClient(path="./chromadb_data")
|
20 |
-
# collection = client.get_or_create_collection(
|
21 |
-
# name="pdf_data",
|
22 |
-
# embedding_function=chromadb.utils.embedding_functions.SentenceTransformerEmbeddingFunction(
|
23 |
-
# model_name="sentence-transformers/all-MiniLM-L6-v2"
|
24 |
-
# ),
|
25 |
-
# )
|
26 |
-
# return client, collection
|
27 |
-
|
28 |
-
# def extract_text_from_pdf(uploaded_file):
|
29 |
-
# with fitz.open(stream=uploaded_file.read(), filetype="pdf") as doc:
|
30 |
-
# text = ""
|
31 |
-
# for page in doc:
|
32 |
-
# text += page.get_text()
|
33 |
-
# return text
|
34 |
-
|
35 |
-
# def add_pdf_text_to_db(collection, pdf_text):
|
36 |
-
# sentences = pdf_text.split("\n") # Split text into lines for granularity
|
37 |
-
# for idx, sentence in enumerate(sentences):
|
38 |
-
# if sentence.strip(): # Avoid empty lines
|
39 |
-
# collection.add(
|
40 |
-
# ids=[f"pdf_text_{idx}"],
|
41 |
-
# documents=[sentence],
|
42 |
-
# metadatas={"line_number": idx, "text": sentence}
|
43 |
-
# )
|
44 |
-
|
45 |
-
# def query_pdf_data(collection, query, retriever_model):
|
46 |
-
# results = collection.query(
|
47 |
-
# query_texts=[query],
|
48 |
-
# n_results=3
|
49 |
-
# )
|
50 |
-
# context = " ".join([doc for doc in results["documents"][0]])
|
51 |
-
# answer = retriever_model(f"Context: {context}\nQuestion: {query}")
|
52 |
-
# return answer, results["metadatas"]
|
53 |
-
|
54 |
-
# # Streamlit Interface
|
55 |
-
# def main():
|
56 |
-
# st.title("PDF Chatbot with Retrieval-Augmented Generation")
|
57 |
-
# st.write("Upload a PDF, and ask questions about its content!")
|
58 |
-
|
59 |
-
# # Initialize components
|
60 |
-
# client, collection = setup_chromadb()
|
61 |
-
# retriever_model = pipeline("text2text-generation", model="google/flan-t5-small") # Free LLM
|
62 |
-
|
63 |
-
# # File upload
|
64 |
-
# uploaded_file = st.file_uploader("Upload your PDF file", type="pdf")
|
65 |
-
# if uploaded_file:
|
66 |
-
# try:
|
67 |
-
# pdf_text = extract_text_from_pdf(uploaded_file)
|
68 |
-
# st.success("Text extracted successfully!")
|
69 |
-
# st.text_area("Extracted Text:", pdf_text, height=300)
|
70 |
-
# add_pdf_text_to_db(collection, pdf_text)
|
71 |
-
# st.success("PDF text has been added to the database. You can now query it!")
|
72 |
-
# except Exception as e:
|
73 |
-
# st.error(f"Error extracting text: {e}")
|
74 |
-
|
75 |
-
# query = st.text_input("Enter your query about the PDF:")
|
76 |
-
# if query:
|
77 |
-
# try:
|
78 |
-
# answer, metadata = query_pdf_data(collection, query, retriever_model)
|
79 |
-
# st.subheader("Answer:")
|
80 |
-
# st.write(answer[0]['generated_text'])
|
81 |
-
# st.subheader("Retrieved Context:")
|
82 |
-
# for meta in metadata[0]:
|
83 |
-
# st.write(meta)
|
84 |
-
# except Exception as e:
|
85 |
-
# st.error(f"An error occurred: {str(e)}")
|
86 |
-
|
87 |
-
|
88 |
-
# if __name__ == "__main__":
|
89 |
-
# main()
|
90 |
-
|
91 |
import chromadb
|
92 |
from chromadb.utils import embedding_functions
|
93 |
from chromadb.config import Settings
|
@@ -173,6 +83,7 @@ def main():
|
|
173 |
st.text_area("Extracted Text:", pdf_text, height=300)
|
174 |
add_pdf_text_to_db(collection, pdf_text)
|
175 |
st.success("PDF text has been added to the database. You can now query it!")
|
|
|
176 |
except Exception as e:
|
177 |
st.error(f"Error extracting text: {e}")
|
178 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import chromadb
|
2 |
from chromadb.utils import embedding_functions
|
3 |
from chromadb.config import Settings
|
|
|
83 |
st.text_area("Extracted Text:", pdf_text, height=300)
|
84 |
add_pdf_text_to_db(collection, pdf_text)
|
85 |
st.success("PDF text has been added to the database. You can now query it!")
|
86 |
+
|
87 |
except Exception as e:
|
88 |
st.error(f"Error extracting text: {e}")
|
89 |
|