|
import spaces |
|
import gradio as gr |
|
from PIL import Image |
|
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline |
|
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref |
|
from src.unet_hacked_tryon import UNet2DConditionModel |
|
from transformers import ( |
|
CLIPImageProcessor, |
|
CLIPVisionModelWithProjection, |
|
CLIPTextModel, |
|
CLIPTextModelWithProjection, |
|
) |
|
from diffusers import DDPMScheduler,AutoencoderKL |
|
from typing import List |
|
|
|
import torch |
|
import os |
|
from transformers import AutoTokenizer |
|
|
|
import numpy as np |
|
from utils_mask import get_mask_location |
|
from torchvision import transforms |
|
import apply_net |
|
from preprocess.humanparsing.run_parsing import Parsing |
|
from preprocess.openpose.run_openpose import OpenPose |
|
from detectron2.data.detection_utils import convert_PIL_to_numpy,_apply_exif_orientation |
|
from torchvision.transforms.functional import to_pil_image |
|
|
|
def pil_to_binary_mask(pil_image, threshold=0): |
|
np_image = np.array(pil_image) |
|
grayscale_image = Image.fromarray(np_image).convert("L") |
|
binary_mask = np.array(grayscale_image) > threshold |
|
mask = np.zeros(binary_mask.shape, dtype=np.uint8) |
|
for i in range(binary_mask.shape[0]): |
|
for j in range(binary_mask.shape[1]): |
|
if binary_mask[i,j] == True : |
|
mask[i,j] = 1 |
|
mask = (mask*255).astype(np.uint8) |
|
output_mask = Image.fromarray(mask) |
|
return output_mask |
|
|
|
import numpy as np |
|
from PIL import Image |
|
|
|
|
|
def get_mask_location(mode, category, parsing, keypoints): |
|
parsing = np.array(parsing) |
|
mask = np.zeros_like(parsing) |
|
|
|
print(f"Selected category: {category}") |
|
print(f"Parsing shape: {parsing.shape}") |
|
print(f"Unique values in parsing: {np.unique(parsing)}") |
|
|
|
if category == "μμ": |
|
|
|
upper_body = [5, 6, 7] |
|
mask[np.isin(parsing, upper_body)] = 255 |
|
print(f"Masking upper body parts: {upper_body}") |
|
elif category == "νμ": |
|
|
|
lower_body = [9, 12, 13, 14, 15, 16, 17, 18, 19] |
|
mask[np.isin(parsing, lower_body)] = 255 |
|
print(f"Masking lower body parts: {lower_body}") |
|
elif category == "λλ μ€": |
|
|
|
full_body = [5, 6, 7, 9, 12, 13, 14, 15, 16, 17, 18, 19] |
|
mask[np.isin(parsing, full_body)] = 255 |
|
print(f"Masking full body parts: {full_body}") |
|
else: |
|
raise ValueError(f"Unknown category: {category}") |
|
|
|
print(f"Mask shape: {mask.shape}, Unique values in mask: {np.unique(mask)}") |
|
print(f"Number of masked pixels: {np.sum(mask == 255)}") |
|
|
|
|
|
import matplotlib.pyplot as plt |
|
plt.figure(figsize=(10, 10)) |
|
plt.imshow(mask, cmap='gray') |
|
plt.title(f"Mask for {category}") |
|
plt.savefig(f"mask_{category}.png") |
|
plt.close() |
|
|
|
mask_gray = Image.fromarray(mask.astype(np.uint8)) |
|
return mask_gray, mask_gray |
|
|
|
|
|
|
|
base_path = 'yisol/IDM-VTON' |
|
example_path = os.path.join(os.path.dirname(__file__), 'example') |
|
|
|
unet = UNet2DConditionModel.from_pretrained( |
|
base_path, |
|
subfolder="unet", |
|
torch_dtype=torch.float16, |
|
) |
|
unet.requires_grad_(False) |
|
tokenizer_one = AutoTokenizer.from_pretrained( |
|
base_path, |
|
subfolder="tokenizer", |
|
revision=None, |
|
use_fast=False, |
|
) |
|
tokenizer_two = AutoTokenizer.from_pretrained( |
|
base_path, |
|
subfolder="tokenizer_2", |
|
revision=None, |
|
use_fast=False, |
|
) |
|
noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler") |
|
|
|
text_encoder_one = CLIPTextModel.from_pretrained( |
|
base_path, |
|
subfolder="text_encoder", |
|
torch_dtype=torch.float16, |
|
) |
|
text_encoder_two = CLIPTextModelWithProjection.from_pretrained( |
|
base_path, |
|
subfolder="text_encoder_2", |
|
torch_dtype=torch.float16, |
|
) |
|
image_encoder = CLIPVisionModelWithProjection.from_pretrained( |
|
base_path, |
|
subfolder="image_encoder", |
|
torch_dtype=torch.float16, |
|
) |
|
vae = AutoencoderKL.from_pretrained(base_path, |
|
subfolder="vae", |
|
torch_dtype=torch.float16, |
|
) |
|
|
|
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained( |
|
base_path, |
|
subfolder="unet_encoder", |
|
torch_dtype=torch.float16, |
|
) |
|
|
|
parsing_model = Parsing(0) |
|
openpose_model = OpenPose(0) |
|
|
|
UNet_Encoder.requires_grad_(False) |
|
image_encoder.requires_grad_(False) |
|
vae.requires_grad_(False) |
|
unet.requires_grad_(False) |
|
text_encoder_one.requires_grad_(False) |
|
text_encoder_two.requires_grad_(False) |
|
tensor_transfrom = transforms.Compose( |
|
[ |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.5], [0.5]), |
|
] |
|
) |
|
|
|
pipe = TryonPipeline.from_pretrained( |
|
base_path, |
|
unet=unet, |
|
vae=vae, |
|
feature_extractor= CLIPImageProcessor(), |
|
text_encoder = text_encoder_one, |
|
text_encoder_2 = text_encoder_two, |
|
tokenizer = tokenizer_one, |
|
tokenizer_2 = tokenizer_two, |
|
scheduler = noise_scheduler, |
|
image_encoder=image_encoder, |
|
torch_dtype=torch.float16, |
|
) |
|
pipe.unet_encoder = UNet_Encoder |
|
|
|
@spaces.GPU |
|
def start_tryon(dict, garm_img, garment_des, is_checked, is_checked_crop, denoise_steps, seed, category): |
|
device = "cuda" |
|
|
|
openpose_model.preprocessor.body_estimation.model.to(device) |
|
pipe.to(device) |
|
pipe.unet_encoder.to(device) |
|
|
|
garm_img = garm_img.convert("RGB").resize((768,1024)) |
|
human_img_orig = dict["background"].convert("RGB") |
|
|
|
if is_checked_crop: |
|
width, height = human_img_orig.size |
|
target_width = int(min(width, height * (3 / 4))) |
|
target_height = int(min(height, width * (4 / 3))) |
|
left = (width - target_width) / 2 |
|
top = (height - target_height) / 2 |
|
right = (width + target_width) / 2 |
|
bottom = (height + target_height) / 2 |
|
cropped_img = human_img_orig.crop((left, top, right, bottom)) |
|
crop_size = cropped_img.size |
|
human_img = cropped_img.resize((768,1024)) |
|
else: |
|
human_img = human_img_orig.resize((768,1024)) |
|
|
|
|
|
status_message = "" |
|
if is_checked: |
|
try: |
|
print(f"Processing category: {category}") |
|
keypoints = openpose_model(human_img.resize((384,512))) |
|
model_parse, _ = parsing_model(human_img.resize((384,512))) |
|
|
|
|
|
print(f"Parsing model output shape: {model_parse.shape}") |
|
print(f"Unique values in parsing model output: {np.unique(model_parse)}") |
|
|
|
mask, mask_gray = get_mask_location('hd', category, model_parse, keypoints) |
|
|
|
|
|
mask_array = np.array(mask) |
|
print(f"Mask shape after get_mask_location: {mask_array.shape}") |
|
print(f"Unique values in mask after get_mask_location: {np.unique(mask_array)}") |
|
print(f"Number of masked pixels after get_mask_location: {np.sum(mask_array == 255)}") |
|
|
|
plt.figure(figsize=(10, 10)) |
|
plt.imshow(mask_array, cmap='gray') |
|
plt.title(f"Mask after get_mask_location for {category}") |
|
plt.savefig(f"mask_after_get_mask_location_{category}.png") |
|
plt.close() |
|
|
|
mask = mask.resize((768,1024)) |
|
print(f"Mask created for category {category}") |
|
|
|
|
|
mask_array_final = np.array(mask) |
|
print(f"Final mask shape: {mask_array_final.shape}") |
|
print(f"Unique values in final mask: {np.unique(mask_array_final)}") |
|
print(f"Number of masked pixels in final mask: {np.sum(mask_array_final == 255)}") |
|
|
|
plt.figure(figsize=(10, 10)) |
|
plt.imshow(mask_array_final, cmap='gray') |
|
plt.title(f"Final Mask for {category}") |
|
plt.savefig(f"final_mask_{category}.png") |
|
plt.close() |
|
|
|
except Exception as e: |
|
status_message = f"μλ λ§μ€ν¬ μμ± μ€ μ€λ₯κ° λ°μνμ΅λλ€: {str(e)}. κΈ°λ³Έ λ§μ€ν¬λ₯Ό μ¬μ©ν©λλ€." |
|
print(f"Error in mask creation: {str(e)}") |
|
mask = Image.new('L', (768, 1024), 255) |
|
else: |
|
if dict['layers'] and dict['layers'][0]: |
|
mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024))) |
|
else: |
|
mask = Image.new('L', (768, 1024), 255) |
|
|
|
mask_gray = (1-transforms.ToTensor()(mask)) * tensor_transfrom(human_img) |
|
mask_gray = to_pil_image((mask_gray+1.0)/2.0) |
|
|
|
human_img_arg = _apply_exif_orientation(human_img.resize((384,512))) |
|
human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR") |
|
|
|
args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda')) |
|
pose_img = args.func(args,human_img_arg) |
|
pose_img = pose_img[:,:,::-1] |
|
pose_img = Image.fromarray(pose_img).resize((768,1024)) |
|
|
|
with torch.no_grad(): |
|
with torch.cuda.amp.autocast(): |
|
with torch.no_grad(): |
|
prompt = "((best quality, masterpiece, ultra-detailed, high quality photography, photo realistic)), the model is wearing " + garment_des |
|
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, normal quality, low quality, blurry, jpeg artifacts, sketch" |
|
with torch.inference_mode(): |
|
( |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
) = pipe.encode_prompt( |
|
prompt, |
|
num_images_per_prompt=1, |
|
do_classifier_free_guidance=True, |
|
negative_prompt=negative_prompt, |
|
) |
|
|
|
prompt = "((best quality, masterpiece, ultra-detailed, high quality photography, photo realistic)), a photo of " + garment_des |
|
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, normal quality, low quality, blurry, jpeg artifacts, sketch" |
|
if not isinstance(prompt, List): |
|
prompt = [prompt] * 1 |
|
if not isinstance(negative_prompt, List): |
|
negative_prompt = [negative_prompt] * 1 |
|
with torch.inference_mode(): |
|
( |
|
prompt_embeds_c, |
|
_, |
|
_, |
|
_, |
|
) = pipe.encode_prompt( |
|
prompt, |
|
num_images_per_prompt=1, |
|
do_classifier_free_guidance=False, |
|
negative_prompt=negative_prompt, |
|
) |
|
|
|
pose_img = tensor_transfrom(pose_img).unsqueeze(0).to(device,torch.float16) |
|
garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device,torch.float16) |
|
generator = torch.Generator(device).manual_seed(seed) if seed is not None else None |
|
result = pipe( |
|
prompt_embeds=prompt_embeds.to(device,torch.float16), |
|
negative_prompt_embeds=negative_prompt_embeds.to(device,torch.float16), |
|
pooled_prompt_embeds=pooled_prompt_embeds.to(device,torch.float16), |
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device,torch.float16), |
|
num_inference_steps=denoise_steps, |
|
generator=generator, |
|
strength = 1.0, |
|
pose_img = pose_img.to(device,torch.float16), |
|
text_embeds_cloth=prompt_embeds_c.to(device,torch.float16), |
|
cloth = garm_tensor.to(device,torch.float16), |
|
mask_image=mask, |
|
image=human_img, |
|
height=1024, |
|
width=768, |
|
ip_adapter_image = garm_img.resize((768,1024)), |
|
guidance_scale=2.0, |
|
) |
|
|
|
|
|
if isinstance(result, tuple): |
|
images = result[0] |
|
elif hasattr(result, 'images'): |
|
images = result.images |
|
else: |
|
raise ValueError(f"Unexpected result type: {type(result)}") |
|
|
|
print(f"Result type: {type(result)}") |
|
print(f"Result content: {result}") |
|
print(f"Mask shape: {mask.size}") |
|
print(f"Human image shape: {human_img.size}") |
|
print(f"Garment image shape: {garm_img.size}") |
|
print(f"Output image shape: {images[0].size}") |
|
|
|
if is_checked_crop: |
|
out_img = images[0].resize(crop_size) |
|
human_img_orig.paste(out_img, (int(left), int(top))) |
|
return human_img_orig, mask_gray, status_message |
|
else: |
|
return images[0], mask_gray, status_message |
|
|
|
garm_list = os.listdir(os.path.join(example_path,"cloth")) |
|
garm_list_path = [os.path.join(example_path,"cloth",garm) for garm in garm_list] |
|
|
|
human_list = os.listdir(os.path.join(example_path,"human")) |
|
human_list_path = [os.path.join(example_path,"human",human) for human in human_list] |
|
|
|
human_ex_list = [] |
|
for ex_human in human_list_path: |
|
ex_dict= {} |
|
ex_dict['background'] = ex_human |
|
ex_dict['layers'] = None |
|
ex_dict['composite'] = None |
|
human_ex_list.append(ex_dict) |
|
|
|
image_blocks = gr.Blocks(theme="Nymbo/Nymbo_Theme").queue(max_size=12) |
|
with image_blocks as demo: |
|
with gr.Column(): |
|
try_button = gr.Button(value="κ°μ νΌν
μμ") |
|
with gr.Accordion(label="κ³ κΈ μ€μ ", open=False): |
|
with gr.Row(): |
|
denoise_steps = gr.Number(label="λλ
Έμ΄μ§ λ¨κ³", minimum=20, maximum=40, value=30, step=1) |
|
seed = gr.Number(label="μλ", minimum=-1, maximum=2147483647, step=1, value=-1) |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
imgs = gr.ImageEditor(sources='upload', type="pil", label='μΈλ¬Ό μ¬μ§. νμΌλ‘ λ§μ€ν¬ λλ μλ λ§μ€νΉ μ¬μ©', interactive=True) |
|
with gr.Row(): |
|
is_checked = gr.Checkbox(label="μ", info="μλ μμ± λ§μ€ν¬ μ¬μ© (5μ΄ μμ)",value=True) |
|
with gr.Row(): |
|
category = gr.Dropdown( |
|
choices=["μμ", "νμ", "λλ μ€"], |
|
label="μΉ΄ν
κ³ λ¦¬", |
|
value="μμ" |
|
) |
|
with gr.Row(): |
|
is_checked_crop = gr.Checkbox(label="μ", info="μλ μλ₯΄κΈ° λ° ν¬κΈ° μ‘°μ μ¬μ©",value=False) |
|
|
|
example = gr.Examples( |
|
inputs=imgs, |
|
examples_per_page=15, |
|
examples=human_ex_list |
|
) |
|
|
|
with gr.Column(): |
|
garm_img = gr.Image(label="μλ₯", sources='upload', type="pil") |
|
with gr.Row(elem_id="prompt-container"): |
|
with gr.Row(): |
|
prompt = gr.Textbox(label="μλ₯ μ€λͺ
", placeholder="λ°μ맀 λΌμ΄λλ₯ ν°μ
μΈ ", show_label=True, elem_id="prompt") |
|
example = gr.Examples( |
|
inputs=garm_img, |
|
examples_per_page=16, |
|
examples=garm_list_path) |
|
with gr.Column(): |
|
masked_img = gr.Image(label="λ§μ€ν¬ μ μ© μ΄λ―Έμ§", elem_id="masked-img",show_share_button=False) |
|
with gr.Column(): |
|
image_out = gr.Image(label="κ²°κ³Ό", elem_id="output-img",show_share_button=False) |
|
|
|
with gr.Column(): |
|
status_message = gr.Textbox(label="μν", interactive=False) |
|
|
|
try_button.click(fn=start_tryon, |
|
inputs=[imgs, garm_img, prompt, is_checked, is_checked_crop, denoise_steps, seed, category], |
|
outputs=[image_out, masked_img, status_message], |
|
api_name='tryon') |
|
|
|
image_blocks.launch(auth=("gini","pick")) |