File size: 16,466 Bytes
ecf5d59 938e515 ecf5d59 938e515 1a13129 938e515 bd21015 089e25c c80bdec 089e25c 798e1fa 089e25c bd21015 c80bdec bd21015 089e25c c80bdec bd21015 089e25c c80bdec bd21015 089e25c c80bdec 089e25c c80bdec 798e1fa c80bdec bd21015 c80bdec 938e515 5c3e064 938e515 c2cb399 938e515 5c3e064 c2cb399 ab2e314 bd21015 5c3e064 938e515 5c3e064 089e25c 5c3e064 089e25c 5c3e064 798e1fa 5c3e064 089e25c 798e1fa 089e25c c80bdec 089e25c d095bd7 938e515 d095bd7 5c3e064 595105e 938e515 c2cb399 938e515 c2cb399 938e515 c2cb399 938e515 07b5520 938e515 c2cb399 07b5520 938e515 595105e 938e515 1f54bd2 938e515 c2cb399 938e515 1f54bd2 d095bd7 1f54bd2 d095bd7 ab2e314 c2cb399 5c3e064 ab2e314 5c3e064 938e515 56ef9fc 90b972b 938e515 d0747e6 c4507be d0747e6 c4507be d0747e6 938e515 c4507be 938e515 c4507be c2cb399 c4507be c2cb399 ab2e314 c4507be ab2e314 938e515 07b5520 938e515 c4507be 938e515 c4507be 938e515 07b5520 938e515 595105e c4507be 938e515 c4507be 5c3e064 6de0e51 5c3e064 c2cb399 c80bdec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 |
import spaces
import gradio as gr
from PIL import Image
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
from src.unet_hacked_tryon import UNet2DConditionModel
from transformers import (
CLIPImageProcessor,
CLIPVisionModelWithProjection,
CLIPTextModel,
CLIPTextModelWithProjection,
)
from diffusers import DDPMScheduler,AutoencoderKL
from typing import List
import torch
import os
from transformers import AutoTokenizer
import numpy as np
from utils_mask import get_mask_location
from torchvision import transforms
import apply_net
from preprocess.humanparsing.run_parsing import Parsing
from preprocess.openpose.run_openpose import OpenPose
from detectron2.data.detection_utils import convert_PIL_to_numpy,_apply_exif_orientation
from torchvision.transforms.functional import to_pil_image
def pil_to_binary_mask(pil_image, threshold=0):
np_image = np.array(pil_image)
grayscale_image = Image.fromarray(np_image).convert("L")
binary_mask = np.array(grayscale_image) > threshold
mask = np.zeros(binary_mask.shape, dtype=np.uint8)
for i in range(binary_mask.shape[0]):
for j in range(binary_mask.shape[1]):
if binary_mask[i,j] == True :
mask[i,j] = 1
mask = (mask*255).astype(np.uint8)
output_mask = Image.fromarray(mask)
return output_mask
import numpy as np
from PIL import Image
def get_mask_location(mode, category, parsing, keypoints):
parsing = np.array(parsing)
mask = np.zeros_like(parsing)
print(f"Selected category: {category}")
print(f"Parsing shape: {parsing.shape}")
print(f"Unique values in parsing: {np.unique(parsing)}")
if category == "μμ":
# μμμ ν΄λΉνλ λΆλΆλ§ λ§μ€νΉ (μ체, ν)
upper_body = [5, 6, 7]
mask[np.isin(parsing, upper_body)] = 255
print(f"Masking upper body parts: {upper_body}")
elif category == "νμ":
# νμμ ν΄λΉνλ λΆλΆλ§ λ§μ€νΉ (ν체)
lower_body = [9, 12, 13, 14, 15, 16, 17, 18, 19]
mask[np.isin(parsing, lower_body)] = 255
print(f"Masking lower body parts: {lower_body}")
elif category == "λλ μ€":
# λλ μ€μ ν΄λΉνλ λΆλΆ λ§μ€νΉ (μ체μ ν체)
full_body = [5, 6, 7, 9, 12, 13, 14, 15, 16, 17, 18, 19]
mask[np.isin(parsing, full_body)] = 255
print(f"Masking full body parts: {full_body}")
else:
raise ValueError(f"Unknown category: {category}")
print(f"Mask shape: {mask.shape}, Unique values in mask: {np.unique(mask)}")
print(f"Number of masked pixels: {np.sum(mask == 255)}")
# λ§μ€ν¬ μκ°νλ₯Ό μν μ½λ μΆκ°
import matplotlib.pyplot as plt
plt.figure(figsize=(10, 10))
plt.imshow(mask, cmap='gray')
plt.title(f"Mask for {category}")
plt.savefig(f"mask_{category}.png")
plt.close()
mask_gray = Image.fromarray(mask.astype(np.uint8))
return mask_gray, mask_gray
base_path = 'yisol/IDM-VTON'
example_path = os.path.join(os.path.dirname(__file__), 'example')
unet = UNet2DConditionModel.from_pretrained(
base_path,
subfolder="unet",
torch_dtype=torch.float16,
)
unet.requires_grad_(False)
tokenizer_one = AutoTokenizer.from_pretrained(
base_path,
subfolder="tokenizer",
revision=None,
use_fast=False,
)
tokenizer_two = AutoTokenizer.from_pretrained(
base_path,
subfolder="tokenizer_2",
revision=None,
use_fast=False,
)
noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")
text_encoder_one = CLIPTextModel.from_pretrained(
base_path,
subfolder="text_encoder",
torch_dtype=torch.float16,
)
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(
base_path,
subfolder="text_encoder_2",
torch_dtype=torch.float16,
)
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
base_path,
subfolder="image_encoder",
torch_dtype=torch.float16,
)
vae = AutoencoderKL.from_pretrained(base_path,
subfolder="vae",
torch_dtype=torch.float16,
)
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
base_path,
subfolder="unet_encoder",
torch_dtype=torch.float16,
)
parsing_model = Parsing(0)
openpose_model = OpenPose(0)
UNet_Encoder.requires_grad_(False)
image_encoder.requires_grad_(False)
vae.requires_grad_(False)
unet.requires_grad_(False)
text_encoder_one.requires_grad_(False)
text_encoder_two.requires_grad_(False)
tensor_transfrom = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
pipe = TryonPipeline.from_pretrained(
base_path,
unet=unet,
vae=vae,
feature_extractor= CLIPImageProcessor(),
text_encoder = text_encoder_one,
text_encoder_2 = text_encoder_two,
tokenizer = tokenizer_one,
tokenizer_2 = tokenizer_two,
scheduler = noise_scheduler,
image_encoder=image_encoder,
torch_dtype=torch.float16,
)
pipe.unet_encoder = UNet_Encoder
@spaces.GPU
def start_tryon(dict, garm_img, garment_des, is_checked, is_checked_crop, denoise_steps, seed, category):
device = "cuda"
openpose_model.preprocessor.body_estimation.model.to(device)
pipe.to(device)
pipe.unet_encoder.to(device)
garm_img = garm_img.convert("RGB").resize((768,1024))
human_img_orig = dict["background"].convert("RGB")
if is_checked_crop:
width, height = human_img_orig.size
target_width = int(min(width, height * (3 / 4)))
target_height = int(min(height, width * (4 / 3)))
left = (width - target_width) / 2
top = (height - target_height) / 2
right = (width + target_width) / 2
bottom = (height + target_height) / 2
cropped_img = human_img_orig.crop((left, top, right, bottom))
crop_size = cropped_img.size
human_img = cropped_img.resize((768,1024))
else:
human_img = human_img_orig.resize((768,1024))
status_message = ""
if is_checked:
try:
print(f"Processing category: {category}")
keypoints = openpose_model(human_img.resize((384,512)))
model_parse, _ = parsing_model(human_img.resize((384,512)))
# νμ± λͺ¨λΈμ μΆλ ₯ νμΈ
print(f"Parsing model output shape: {model_parse.shape}")
print(f"Unique values in parsing model output: {np.unique(model_parse)}")
mask, mask_gray = get_mask_location('hd', category, model_parse, keypoints)
# λ§μ€ν¬ νμΈ λ° μκ°ν
mask_array = np.array(mask)
print(f"Mask shape after get_mask_location: {mask_array.shape}")
print(f"Unique values in mask after get_mask_location: {np.unique(mask_array)}")
print(f"Number of masked pixels after get_mask_location: {np.sum(mask_array == 255)}")
plt.figure(figsize=(10, 10))
plt.imshow(mask_array, cmap='gray')
plt.title(f"Mask after get_mask_location for {category}")
plt.savefig(f"mask_after_get_mask_location_{category}.png")
plt.close()
mask = mask.resize((768,1024))
print(f"Mask created for category {category}")
# μ΅μ’
λ§μ€ν¬ νμΈ
mask_array_final = np.array(mask)
print(f"Final mask shape: {mask_array_final.shape}")
print(f"Unique values in final mask: {np.unique(mask_array_final)}")
print(f"Number of masked pixels in final mask: {np.sum(mask_array_final == 255)}")
plt.figure(figsize=(10, 10))
plt.imshow(mask_array_final, cmap='gray')
plt.title(f"Final Mask for {category}")
plt.savefig(f"final_mask_{category}.png")
plt.close()
except Exception as e:
status_message = f"μλ λ§μ€ν¬ μμ± μ€ μ€λ₯κ° λ°μνμ΅λλ€: {str(e)}. κΈ°λ³Έ λ§μ€ν¬λ₯Ό μ¬μ©ν©λλ€."
print(f"Error in mask creation: {str(e)}")
mask = Image.new('L', (768, 1024), 255)
else:
if dict['layers'] and dict['layers'][0]:
mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))
else:
mask = Image.new('L', (768, 1024), 255)
mask_gray = (1-transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
mask_gray = to_pil_image((mask_gray+1.0)/2.0)
human_img_arg = _apply_exif_orientation(human_img.resize((384,512)))
human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda'))
pose_img = args.func(args,human_img_arg)
pose_img = pose_img[:,:,::-1]
pose_img = Image.fromarray(pose_img).resize((768,1024))
with torch.no_grad():
with torch.cuda.amp.autocast():
with torch.no_grad():
prompt = "((best quality, masterpiece, ultra-detailed, high quality photography, photo realistic)), the model is wearing " + garment_des
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, normal quality, low quality, blurry, jpeg artifacts, sketch"
with torch.inference_mode():
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = pipe.encode_prompt(
prompt,
num_images_per_prompt=1,
do_classifier_free_guidance=True,
negative_prompt=negative_prompt,
)
prompt = "((best quality, masterpiece, ultra-detailed, high quality photography, photo realistic)), a photo of " + garment_des
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, normal quality, low quality, blurry, jpeg artifacts, sketch"
if not isinstance(prompt, List):
prompt = [prompt] * 1
if not isinstance(negative_prompt, List):
negative_prompt = [negative_prompt] * 1
with torch.inference_mode():
(
prompt_embeds_c,
_,
_,
_,
) = pipe.encode_prompt(
prompt,
num_images_per_prompt=1,
do_classifier_free_guidance=False,
negative_prompt=negative_prompt,
)
pose_img = tensor_transfrom(pose_img).unsqueeze(0).to(device,torch.float16)
garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device,torch.float16)
generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
result = pipe(
prompt_embeds=prompt_embeds.to(device,torch.float16),
negative_prompt_embeds=negative_prompt_embeds.to(device,torch.float16),
pooled_prompt_embeds=pooled_prompt_embeds.to(device,torch.float16),
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device,torch.float16),
num_inference_steps=denoise_steps,
generator=generator,
strength = 1.0,
pose_img = pose_img.to(device,torch.float16),
text_embeds_cloth=prompt_embeds_c.to(device,torch.float16),
cloth = garm_tensor.to(device,torch.float16),
mask_image=mask,
image=human_img,
height=1024,
width=768,
ip_adapter_image = garm_img.resize((768,1024)),
guidance_scale=2.0,
)
# κ²°κ³Ό νν νμΈ λ° μ²λ¦¬
if isinstance(result, tuple):
images = result[0]
elif hasattr(result, 'images'):
images = result.images
else:
raise ValueError(f"Unexpected result type: {type(result)}")
print(f"Result type: {type(result)}")
print(f"Result content: {result}")
print(f"Mask shape: {mask.size}")
print(f"Human image shape: {human_img.size}")
print(f"Garment image shape: {garm_img.size}")
print(f"Output image shape: {images[0].size}")
if is_checked_crop:
out_img = images[0].resize(crop_size)
human_img_orig.paste(out_img, (int(left), int(top)))
return human_img_orig, mask_gray, status_message
else:
return images[0], mask_gray, status_message
garm_list = os.listdir(os.path.join(example_path,"cloth"))
garm_list_path = [os.path.join(example_path,"cloth",garm) for garm in garm_list]
human_list = os.listdir(os.path.join(example_path,"human"))
human_list_path = [os.path.join(example_path,"human",human) for human in human_list]
human_ex_list = []
for ex_human in human_list_path:
ex_dict= {}
ex_dict['background'] = ex_human
ex_dict['layers'] = None
ex_dict['composite'] = None
human_ex_list.append(ex_dict)
image_blocks = gr.Blocks(theme="Nymbo/Nymbo_Theme").queue(max_size=12)
with image_blocks as demo:
with gr.Column():
try_button = gr.Button(value="κ°μ νΌν
μμ")
with gr.Accordion(label="κ³ κΈ μ€μ ", open=False):
with gr.Row():
denoise_steps = gr.Number(label="λλ
Έμ΄μ§ λ¨κ³", minimum=20, maximum=40, value=30, step=1)
seed = gr.Number(label="μλ", minimum=-1, maximum=2147483647, step=1, value=-1)
with gr.Row():
with gr.Column():
imgs = gr.ImageEditor(sources='upload', type="pil", label='μΈλ¬Ό μ¬μ§. νμΌλ‘ λ§μ€ν¬ λλ μλ λ§μ€νΉ μ¬μ©', interactive=True)
with gr.Row():
is_checked = gr.Checkbox(label="μ", info="μλ μμ± λ§μ€ν¬ μ¬μ© (5μ΄ μμ)",value=True)
with gr.Row():
category = gr.Dropdown(
choices=["μμ", "νμ", "λλ μ€"],
label="μΉ΄ν
κ³ λ¦¬",
value="μμ"
)
with gr.Row():
is_checked_crop = gr.Checkbox(label="μ", info="μλ μλ₯΄κΈ° λ° ν¬κΈ° μ‘°μ μ¬μ©",value=False)
example = gr.Examples(
inputs=imgs,
examples_per_page=15,
examples=human_ex_list
)
with gr.Column():
garm_img = gr.Image(label="μλ₯", sources='upload', type="pil")
with gr.Row(elem_id="prompt-container"):
with gr.Row():
prompt = gr.Textbox(label="μλ₯ μ€λͺ
", placeholder="λ°μ맀 λΌμ΄λλ₯ ν°μ
μΈ ", show_label=True, elem_id="prompt")
example = gr.Examples(
inputs=garm_img,
examples_per_page=16,
examples=garm_list_path)
with gr.Column():
masked_img = gr.Image(label="λ§μ€ν¬ μ μ© μ΄λ―Έμ§", elem_id="masked-img",show_share_button=False)
with gr.Column():
image_out = gr.Image(label="κ²°κ³Ό", elem_id="output-img",show_share_button=False)
with gr.Column():
status_message = gr.Textbox(label="μν", interactive=False)
try_button.click(fn=start_tryon,
inputs=[imgs, garm_img, prompt, is_checked, is_checked_crop, denoise_steps, seed, category],
outputs=[image_out, masked_img, status_message],
api_name='tryon')
image_blocks.launch(auth=("gini","pick")) |