File size: 16,466 Bytes
ecf5d59
938e515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecf5d59
938e515
 
 
 
 
 
 
1a13129
938e515
 
 
 
 
 
 
 
 
 
 
 
 
 
bd21015
 
 
089e25c
c80bdec
 
 
 
089e25c
798e1fa
089e25c
bd21015
c80bdec
bd21015
089e25c
 
 
c80bdec
bd21015
089e25c
 
 
c80bdec
bd21015
089e25c
 
 
c80bdec
 
 
089e25c
 
c80bdec
798e1fa
 
 
 
 
 
 
 
 
c80bdec
bd21015
 
c80bdec
938e515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c3e064
938e515
c2cb399
938e515
 
 
 
5c3e064
c2cb399
 
ab2e314
 
 
 
 
 
 
 
 
 
 
 
 
 
bd21015
5c3e064
938e515
5c3e064
089e25c
5c3e064
 
089e25c
 
 
 
 
5c3e064
798e1fa
 
 
 
 
 
 
 
 
 
 
 
 
5c3e064
089e25c
 
798e1fa
 
 
 
 
 
 
 
 
 
 
089e25c
c80bdec
 
089e25c
d095bd7
938e515
d095bd7
 
 
 
5c3e064
595105e
 
938e515
 
 
c2cb399
938e515
c2cb399
 
938e515
c2cb399
938e515
 
 
07b5520
 
938e515
 
 
 
 
 
 
 
 
 
 
 
c2cb399
07b5520
 
938e515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
595105e
938e515
 
 
1f54bd2
938e515
 
 
 
 
 
 
 
 
 
 
c2cb399
938e515
 
 
 
1f54bd2
 
 
 
 
 
 
 
 
d095bd7
1f54bd2
 
d095bd7
 
 
 
ab2e314
 
c2cb399
 
5c3e064
ab2e314
5c3e064
938e515
56ef9fc
 
 
 
 
 
 
 
 
 
 
 
 
 
90b972b
938e515
d0747e6
c4507be
 
d0747e6
c4507be
 
d0747e6
938e515
 
c4507be
938e515
c4507be
c2cb399
 
c4507be
 
 
c2cb399
ab2e314
c4507be
ab2e314
938e515
 
07b5520
938e515
 
 
 
c4507be
938e515
 
c4507be
938e515
 
07b5520
938e515
595105e
c4507be
938e515
c4507be
5c3e064
 
 
6de0e51
5c3e064
 
 
 
c2cb399
c80bdec
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
import spaces
import gradio as gr
from PIL import Image
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
from src.unet_hacked_tryon import UNet2DConditionModel
from transformers import (
    CLIPImageProcessor,
    CLIPVisionModelWithProjection,
    CLIPTextModel,
    CLIPTextModelWithProjection,
)
from diffusers import DDPMScheduler,AutoencoderKL
from typing import List

import torch
import os
from transformers import AutoTokenizer

import numpy as np
from utils_mask import get_mask_location
from torchvision import transforms
import apply_net
from preprocess.humanparsing.run_parsing import Parsing
from preprocess.openpose.run_openpose import OpenPose
from detectron2.data.detection_utils import convert_PIL_to_numpy,_apply_exif_orientation
from torchvision.transforms.functional import to_pil_image

def pil_to_binary_mask(pil_image, threshold=0):
    np_image = np.array(pil_image)
    grayscale_image = Image.fromarray(np_image).convert("L")
    binary_mask = np.array(grayscale_image) > threshold
    mask = np.zeros(binary_mask.shape, dtype=np.uint8)
    for i in range(binary_mask.shape[0]):
        for j in range(binary_mask.shape[1]):
            if binary_mask[i,j] == True :
                mask[i,j] = 1
    mask = (mask*255).astype(np.uint8)
    output_mask = Image.fromarray(mask)
    return output_mask

import numpy as np
from PIL import Image


def get_mask_location(mode, category, parsing, keypoints):
    parsing = np.array(parsing)
    mask = np.zeros_like(parsing)
    
    print(f"Selected category: {category}")
    print(f"Parsing shape: {parsing.shape}")
    print(f"Unique values in parsing: {np.unique(parsing)}")
    
    if category == "μƒμ˜":
        # μƒμ˜μ— ν•΄λ‹Ήν•˜λŠ” λΆ€λΆ„λ§Œ λ§ˆμŠ€ν‚Ή (상체, νŒ”)
        upper_body = [5, 6, 7]
        mask[np.isin(parsing, upper_body)] = 255
        print(f"Masking upper body parts: {upper_body}")
    elif category == "ν•˜μ˜":
        # ν•˜μ˜μ— ν•΄λ‹Ήν•˜λŠ” λΆ€λΆ„λ§Œ λ§ˆμŠ€ν‚Ή (ν•˜μ²΄)
        lower_body = [9, 12, 13, 14, 15, 16, 17, 18, 19]
        mask[np.isin(parsing, lower_body)] = 255
        print(f"Masking lower body parts: {lower_body}")
    elif category == "λ“œλ ˆμŠ€":
        # λ“œλ ˆμŠ€μ— ν•΄λ‹Ήν•˜λŠ” λΆ€λΆ„ λ§ˆμŠ€ν‚Ή (상체와 ν•˜μ²΄)
        full_body = [5, 6, 7, 9, 12, 13, 14, 15, 16, 17, 18, 19]
        mask[np.isin(parsing, full_body)] = 255
        print(f"Masking full body parts: {full_body}")
    else:
        raise ValueError(f"Unknown category: {category}")
    
    print(f"Mask shape: {mask.shape}, Unique values in mask: {np.unique(mask)}")
    print(f"Number of masked pixels: {np.sum(mask == 255)}")
    
    # 마슀크 μ‹œκ°ν™”λ₯Ό μœ„ν•œ μ½”λ“œ μΆ”κ°€
    import matplotlib.pyplot as plt
    plt.figure(figsize=(10, 10))
    plt.imshow(mask, cmap='gray')
    plt.title(f"Mask for {category}")
    plt.savefig(f"mask_{category}.png")
    plt.close()
    
    mask_gray = Image.fromarray(mask.astype(np.uint8))
    return mask_gray, mask_gray
    


base_path = 'yisol/IDM-VTON'
example_path = os.path.join(os.path.dirname(__file__), 'example')

unet = UNet2DConditionModel.from_pretrained(
    base_path,
    subfolder="unet",
    torch_dtype=torch.float16,
)
unet.requires_grad_(False)
tokenizer_one = AutoTokenizer.from_pretrained(
    base_path,
    subfolder="tokenizer",
    revision=None,
    use_fast=False,
)
tokenizer_two = AutoTokenizer.from_pretrained(
    base_path,
    subfolder="tokenizer_2",
    revision=None,
    use_fast=False,
)
noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")

text_encoder_one = CLIPTextModel.from_pretrained(
    base_path,
    subfolder="text_encoder",
    torch_dtype=torch.float16,
)
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(
    base_path,
    subfolder="text_encoder_2",
    torch_dtype=torch.float16,
)
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
    base_path,
    subfolder="image_encoder",
    torch_dtype=torch.float16,
    )
vae = AutoencoderKL.from_pretrained(base_path,
                                    subfolder="vae",
                                    torch_dtype=torch.float16,
)

UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
    base_path,
    subfolder="unet_encoder",
    torch_dtype=torch.float16,
)

parsing_model = Parsing(0)
openpose_model = OpenPose(0)

UNet_Encoder.requires_grad_(False)
image_encoder.requires_grad_(False)
vae.requires_grad_(False)
unet.requires_grad_(False)
text_encoder_one.requires_grad_(False)
text_encoder_two.requires_grad_(False)
tensor_transfrom = transforms.Compose(
            [
                transforms.ToTensor(),
                transforms.Normalize([0.5], [0.5]),
            ]
    )

pipe = TryonPipeline.from_pretrained(
        base_path,
        unet=unet,
        vae=vae,
        feature_extractor= CLIPImageProcessor(),
        text_encoder = text_encoder_one,
        text_encoder_2 = text_encoder_two,
        tokenizer = tokenizer_one,
        tokenizer_2 = tokenizer_two,
        scheduler = noise_scheduler,
        image_encoder=image_encoder,
        torch_dtype=torch.float16,
)
pipe.unet_encoder = UNet_Encoder

@spaces.GPU
def start_tryon(dict, garm_img, garment_des, is_checked, is_checked_crop, denoise_steps, seed, category):
    device = "cuda"

    openpose_model.preprocessor.body_estimation.model.to(device)
    pipe.to(device)
    pipe.unet_encoder.to(device)

    garm_img = garm_img.convert("RGB").resize((768,1024))
    human_img_orig = dict["background"].convert("RGB")

    if is_checked_crop:
        width, height = human_img_orig.size
        target_width = int(min(width, height * (3 / 4)))
        target_height = int(min(height, width * (4 / 3)))
        left = (width - target_width) / 2
        top = (height - target_height) / 2
        right = (width + target_width) / 2
        bottom = (height + target_height) / 2
        cropped_img = human_img_orig.crop((left, top, right, bottom))
        crop_size = cropped_img.size
        human_img = cropped_img.resize((768,1024))
    else:
        human_img = human_img_orig.resize((768,1024))


    status_message = ""
    if is_checked:
        try:
            print(f"Processing category: {category}")
            keypoints = openpose_model(human_img.resize((384,512)))
            model_parse, _ = parsing_model(human_img.resize((384,512)))
            
            # νŒŒμ‹± λͺ¨λΈμ˜ 좜λ ₯ 확인
            print(f"Parsing model output shape: {model_parse.shape}")
            print(f"Unique values in parsing model output: {np.unique(model_parse)}")
            
            mask, mask_gray = get_mask_location('hd', category, model_parse, keypoints)
            
            # 마슀크 확인 및 μ‹œκ°ν™”
            mask_array = np.array(mask)
            print(f"Mask shape after get_mask_location: {mask_array.shape}")
            print(f"Unique values in mask after get_mask_location: {np.unique(mask_array)}")
            print(f"Number of masked pixels after get_mask_location: {np.sum(mask_array == 255)}")
            
            plt.figure(figsize=(10, 10))
            plt.imshow(mask_array, cmap='gray')
            plt.title(f"Mask after get_mask_location for {category}")
            plt.savefig(f"mask_after_get_mask_location_{category}.png")
            plt.close()
            
            mask = mask.resize((768,1024))
            print(f"Mask created for category {category}")
            
            # μ΅œμ’… 마슀크 확인
            mask_array_final = np.array(mask)
            print(f"Final mask shape: {mask_array_final.shape}")
            print(f"Unique values in final mask: {np.unique(mask_array_final)}")
            print(f"Number of masked pixels in final mask: {np.sum(mask_array_final == 255)}")
            
            plt.figure(figsize=(10, 10))
            plt.imshow(mask_array_final, cmap='gray')
            plt.title(f"Final Mask for {category}")
            plt.savefig(f"final_mask_{category}.png")
            plt.close()
            
        except Exception as e:
            status_message = f"μžλ™ 마슀크 생성 쀑 였λ₯˜κ°€ λ°œμƒν–ˆμŠ΅λ‹ˆλ‹€: {str(e)}. κΈ°λ³Έ 마슀크λ₯Ό μ‚¬μš©ν•©λ‹ˆλ‹€."
            print(f"Error in mask creation: {str(e)}")
            mask = Image.new('L', (768, 1024), 255)
    else:
        if dict['layers'] and dict['layers'][0]:
            mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))
        else:
            mask = Image.new('L', (768, 1024), 255)
    
    mask_gray = (1-transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
    mask_gray = to_pil_image((mask_gray+1.0)/2.0)

    human_img_arg = _apply_exif_orientation(human_img.resize((384,512)))
    human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")

    args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda'))
    pose_img = args.func(args,human_img_arg)
    pose_img = pose_img[:,:,::-1]
    pose_img = Image.fromarray(pose_img).resize((768,1024))

    with torch.no_grad():
        with torch.cuda.amp.autocast():
            with torch.no_grad():
                prompt = "((best quality, masterpiece, ultra-detailed, high quality photography, photo realistic)), the model is wearing " + garment_des
                negative_prompt = "monochrome, lowres, bad anatomy, worst quality, normal quality, low quality, blurry, jpeg artifacts, sketch"
                with torch.inference_mode():
                    (
                        prompt_embeds,
                        negative_prompt_embeds,
                        pooled_prompt_embeds,
                        negative_pooled_prompt_embeds,
                    ) = pipe.encode_prompt(
                        prompt,
                        num_images_per_prompt=1,
                        do_classifier_free_guidance=True,
                        negative_prompt=negative_prompt,
                    )

                    prompt = "((best quality, masterpiece, ultra-detailed, high quality photography, photo realistic)), a photo of " + garment_des
                    negative_prompt = "monochrome, lowres, bad anatomy, worst quality, normal quality, low quality, blurry, jpeg artifacts, sketch"
                    if not isinstance(prompt, List):
                        prompt = [prompt] * 1
                    if not isinstance(negative_prompt, List):
                        negative_prompt = [negative_prompt] * 1
                    with torch.inference_mode():
                        (
                            prompt_embeds_c,
                            _,
                            _,
                            _,
                        ) = pipe.encode_prompt(
                            prompt,
                            num_images_per_prompt=1,
                            do_classifier_free_guidance=False,
                            negative_prompt=negative_prompt,
                        )

                    pose_img =  tensor_transfrom(pose_img).unsqueeze(0).to(device,torch.float16)
                    garm_tensor =  tensor_transfrom(garm_img).unsqueeze(0).to(device,torch.float16)
                    generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
                    result = pipe(
                        prompt_embeds=prompt_embeds.to(device,torch.float16),
                        negative_prompt_embeds=negative_prompt_embeds.to(device,torch.float16),
                        pooled_prompt_embeds=pooled_prompt_embeds.to(device,torch.float16),
                        negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device,torch.float16),
                        num_inference_steps=denoise_steps,
                        generator=generator,
                        strength = 1.0,
                        pose_img = pose_img.to(device,torch.float16),
                        text_embeds_cloth=prompt_embeds_c.to(device,torch.float16),
                        cloth = garm_tensor.to(device,torch.float16),
                        mask_image=mask,
                        image=human_img,
                        height=1024,
                        width=768,
                        ip_adapter_image = garm_img.resize((768,1024)),
                        guidance_scale=2.0,
                    )
                    
                    # κ²°κ³Ό ν˜•νƒœ 확인 및 처리
                    if isinstance(result, tuple):
                        images = result[0]
                    elif hasattr(result, 'images'):
                        images = result.images
                    else:
                        raise ValueError(f"Unexpected result type: {type(result)}")

    print(f"Result type: {type(result)}")
    print(f"Result content: {result}")
    print(f"Mask shape: {mask.size}")
    print(f"Human image shape: {human_img.size}")
    print(f"Garment image shape: {garm_img.size}")
    print(f"Output image shape: {images[0].size}")

    if is_checked_crop:
        out_img = images[0].resize(crop_size)
        human_img_orig.paste(out_img, (int(left), int(top)))
        return human_img_orig, mask_gray, status_message
    else:
        return images[0], mask_gray, status_message

garm_list = os.listdir(os.path.join(example_path,"cloth"))
garm_list_path = [os.path.join(example_path,"cloth",garm) for garm in garm_list]

human_list = os.listdir(os.path.join(example_path,"human"))
human_list_path = [os.path.join(example_path,"human",human) for human in human_list]

human_ex_list = []
for ex_human in human_list_path:
    ex_dict= {}
    ex_dict['background'] = ex_human
    ex_dict['layers'] = None
    ex_dict['composite'] = None
    human_ex_list.append(ex_dict)

image_blocks = gr.Blocks(theme="Nymbo/Nymbo_Theme").queue(max_size=12)
with image_blocks as demo:
    with gr.Column():
        try_button = gr.Button(value="가상 ν”ΌνŒ… μ‹œμž‘")
        with gr.Accordion(label="κ³ κΈ‰ μ„€μ •", open=False):
            with gr.Row():
                denoise_steps = gr.Number(label="디노이징 단계", minimum=20, maximum=40, value=30, step=1)
                seed = gr.Number(label="μ‹œλ“œ", minimum=-1, maximum=2147483647, step=1, value=-1)

    with gr.Row():
        with gr.Column():
            imgs = gr.ImageEditor(sources='upload', type="pil", label='인물 사진. 펜으둜 마슀크 λ˜λŠ” μžλ™ λ§ˆμŠ€ν‚Ή μ‚¬μš©', interactive=True)
            with gr.Row():
                is_checked = gr.Checkbox(label="예", info="μžλ™ 생성 마슀크 μ‚¬μš© (5초 μ†Œμš”)",value=True)
            with gr.Row():
                category = gr.Dropdown(
                    choices=["μƒμ˜", "ν•˜μ˜", "λ“œλ ˆμŠ€"],
                    label="μΉ΄ν…Œκ³ λ¦¬",
                    value="μƒμ˜"
                )
            with gr.Row():
                is_checked_crop = gr.Checkbox(label="예", info="μžλ™ 자λ₯΄κΈ° 및 크기 μ‘°μ • μ‚¬μš©",value=False)

            example = gr.Examples(
                inputs=imgs,
                examples_per_page=15,
                examples=human_ex_list
            )

        with gr.Column():
            garm_img = gr.Image(label="의λ₯˜", sources='upload', type="pil")
            with gr.Row(elem_id="prompt-container"):
                with gr.Row():
                    prompt = gr.Textbox(label="의λ₯˜ μ„€λͺ…", placeholder="λ°˜μ†Œλ§€ λΌμš΄λ“œλ„₯ ν‹°μ…”μΈ ", show_label=True, elem_id="prompt")
            example = gr.Examples(
                inputs=garm_img,
                examples_per_page=16,
                examples=garm_list_path)
        with gr.Column():
            masked_img = gr.Image(label="마슀크 적용 이미지", elem_id="masked-img",show_share_button=False)
        with gr.Column():
            image_out = gr.Image(label="κ²°κ³Ό", elem_id="output-img",show_share_button=False)
        
    with gr.Column():
        status_message = gr.Textbox(label="μƒνƒœ", interactive=False)

    try_button.click(fn=start_tryon, 
                     inputs=[imgs, garm_img, prompt, is_checked, is_checked_crop, denoise_steps, seed, category], 
                     outputs=[image_out, masked_img, status_message], 
                     api_name='tryon')

image_blocks.launch(auth=("gini","pick"))