Spaces:
Running
Running
import gradio as gr | |
import spaces | |
import os | |
import uuid | |
import subprocess | |
import torch | |
print("check torch and cuda version, they must be 2.4.0 + 12.1:") | |
print(torch.__version__) | |
print(torch.version.cuda) | |
# download model | |
print("Downloading model weights") | |
os.system('wget -q https://huggingface.co/ThunderVVV/HaWoR/resolve/main/external/metric_depth_vit_large_800k.pth -P ./thirdparty/Metric3D/weights/') | |
os.system('wget -q https://huggingface.co/ThunderVVV/HaWoR/resolve/main/external/droid.pth -P ./weights/external/') | |
os.system('wget -q https://huggingface.co/ThunderVVV/HaWoR/resolve/main/external/detector.pt -P ./weights/external/') | |
os.system('wget -q https://huggingface.co/ThunderVVV/HaWoR/resolve/main/hawor/checkpoints/hawor.ckpt -P ./weights/hawor/checkpoints/') | |
os.system('wget -q https://huggingface.co/ThunderVVV/HaWoR/resolve/main/hawor/checkpoints/infiller.pt -P ./weights/hawor/checkpoints/') | |
os.system('wget -q https://huggingface.co/ThunderVVV/HaWoR/resolve/main/hawor/model_config.yaml -P ./weights/hawor/') | |
def install_cuda_toolkit(): | |
CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.1.0/local_installers/cuda_12.1.0_530.30.02_linux.run" | |
CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL) | |
subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE]) | |
subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE]) | |
subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"]) | |
os.environ["CUDA_HOME"] = "/usr/local/cuda" | |
os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"]) | |
os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % ( | |
os.environ["CUDA_HOME"], | |
"" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"], | |
) | |
os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6" | |
print("Compling other packages") | |
install_cuda_toolkit() | |
os.system('pip install ./thirdparty/DROID-SLAM') | |
os.system('pip install ./thirdparty/DROID-SLAM/thirdparty/lietorch') | |
os.environ["FORCE_CUDA"] = "1" | |
os.system('pip install git+https://github.com/facebookresearch/pytorch3d.git@stable') | |
import numpy as np | |
import joblib | |
import cv2 | |
import imageio | |
from easydict import EasyDict | |
from scripts.scripts_test_video.detect_track_video import detect_track_video | |
from scripts.scripts_test_video.hawor_video import hawor_motion_estimation, hawor_infiller | |
from scripts.scripts_test_video.hawor_slam import hawor_slam | |
from hawor.utils.process import get_mano_faces, run_mano, run_mano_left | |
from lib.eval_utils.custom_utils import load_slam_cam | |
from lib.vis.run_vis2 import lookat_matrix, run_vis2_on_video, run_vis2_on_video_cam | |
from lib.vis.renderer_world import Renderer | |
# @spaces.GPU(duration=200) | |
def render_reconstruction(input_video, img_focal): | |
args = EasyDict() | |
args.video_path = input_video | |
args.input_type = 'file' | |
args.checkpoint = './weights/hawor/checkpoints/hawor.ckpt' | |
args.infiller_weight = './weights/hawor/checkpoints/infiller.pt' | |
args.vis_mode = 'world' | |
args.img_focal = img_focal | |
start_idx, end_idx, seq_folder, imgfiles = detect_track_video(args) | |
if os.path.exists(f'{seq_folder}/tracks_{start_idx}_{end_idx}/frame_chunks_all.npy'): | |
print("skip hawor motion estimation") | |
frame_chunks_all = joblib.load(f'{seq_folder}/tracks_{start_idx}_{end_idx}/frame_chunks_all.npy') | |
img_focal = args.img_focal | |
else: | |
frame_chunks_all, img_focal = hawor_motion_estimation(args, start_idx, end_idx, seq_folder) | |
slam_path = os.path.join(seq_folder, f"SLAM/hawor_slam_w_scale_{start_idx}_{end_idx}.npz") | |
if not os.path.exists(slam_path): | |
hawor_slam(args, start_idx, end_idx) | |
R_w2c_sla_all, t_w2c_sla_all, R_c2w_sla_all, t_c2w_sla_all = load_slam_cam(slam_path) | |
out_path = infiller_and_vis(args, start_idx, end_idx, frame_chunks_all, R_w2c_sla_all, t_w2c_sla_all, R_c2w_sla_all, t_c2w_sla_all, seq_folder, imgfiles) | |
return out_path | |
def infiller_and_vis(args, start_idx, end_idx, frame_chunks_all, R_w2c_sla_all, t_w2c_sla_all, R_c2w_sla_all, t_c2w_sla_all, seq_folder, imgfiles): | |
pred_trans, pred_rot, pred_hand_pose, pred_betas, pred_valid = hawor_infiller(args, start_idx, end_idx, frame_chunks_all) | |
# vis sequence for this video | |
hand2idx = { | |
"right": 1, | |
"left": 0 | |
} | |
vis_start = 0 | |
vis_end = pred_trans.shape[1] - 1 | |
# get faces | |
faces = get_mano_faces() | |
faces_new = np.array([[92, 38, 234], | |
[234, 38, 239], | |
[38, 122, 239], | |
[239, 122, 279], | |
[122, 118, 279], | |
[279, 118, 215], | |
[118, 117, 215], | |
[215, 117, 214], | |
[117, 119, 214], | |
[214, 119, 121], | |
[119, 120, 121], | |
[121, 120, 78], | |
[120, 108, 78], | |
[78, 108, 79]]) | |
faces_right = np.concatenate([faces, faces_new], axis=0) | |
# get right hand vertices | |
hand = 'right' | |
hand_idx = hand2idx[hand] | |
pred_glob_r = run_mano(pred_trans[hand_idx:hand_idx+1, vis_start:vis_end], pred_rot[hand_idx:hand_idx+1, vis_start:vis_end], pred_hand_pose[hand_idx:hand_idx+1, vis_start:vis_end], betas=pred_betas[hand_idx:hand_idx+1, vis_start:vis_end]) | |
right_verts = pred_glob_r['vertices'][0] | |
right_dict = { | |
'vertices': right_verts.unsqueeze(0), | |
'faces': faces_right, | |
} | |
# get left hand vertices | |
faces_left = faces_right[:,[0,2,1]] | |
hand = 'left' | |
hand_idx = hand2idx[hand] | |
pred_glob_l = run_mano_left(pred_trans[hand_idx:hand_idx+1, vis_start:vis_end], pred_rot[hand_idx:hand_idx+1, vis_start:vis_end], pred_hand_pose[hand_idx:hand_idx+1, vis_start:vis_end], betas=pred_betas[hand_idx:hand_idx+1, vis_start:vis_end]) | |
left_verts = pred_glob_l['vertices'][0] | |
left_dict = { | |
'vertices': left_verts.unsqueeze(0), | |
'faces': faces_left, | |
} | |
R_x = torch.tensor([[1, 0, 0], | |
[0, -1, 0], | |
[0, 0, -1]]).float() | |
R_c2w_sla_all = torch.einsum('ij,njk->nik', R_x, R_c2w_sla_all) | |
t_c2w_sla_all = torch.einsum('ij,nj->ni', R_x, t_c2w_sla_all) | |
R_w2c_sla_all = R_c2w_sla_all.transpose(-1, -2) | |
t_w2c_sla_all = -torch.einsum("bij,bj->bi", R_w2c_sla_all, t_c2w_sla_all) | |
left_dict['vertices'] = torch.einsum('ij,btnj->btni', R_x, left_dict['vertices'].cpu()) | |
right_dict['vertices'] = torch.einsum('ij,btnj->btni', R_x, right_dict['vertices'].cpu()) | |
# simple visualization | |
bin_size = 128 | |
max_faces_per_bin = 20000 | |
img = cv2.imread(imgfiles[0]) | |
renderer = Renderer(img.shape[1], img.shape[0], 1800, 'cuda', | |
bin_size=bin_size, max_faces_per_bin=max_faces_per_bin) | |
output_pth = os.path.join(seq_folder, f"vis_{vis_start}_{vis_end}") | |
if not os.path.exists(output_pth): | |
os.makedirs(output_pth) | |
image_names = imgfiles[vis_start:vis_end] | |
print(f"vis {vis_start} to {vis_end}") | |
# vis_video_path = run_vis2_on_video(left_dict, right_dict, output_pth, img_focal, image_names, R_c2w=R_c2w_sla_all[vis_start:vis_end], t_c2w=t_c2w_sla_all[vis_start:vis_end], interactive=False) | |
faces_left = torch.from_numpy(faces_left).cuda() | |
faces_right = torch.from_numpy(faces_right).cuda() | |
faces_all = torch.stack((faces_left, faces_right)) | |
side_source = torch.tensor([0.463, -0.478, 2.456]) | |
side_target = torch.tensor([0.026, -0.481, -3.184]) | |
up = torch.tensor([1.0, 0.0, 0.0]) | |
view_camera = lookat_matrix(side_source, side_target, up) | |
cam_R = view_camera[:3, :3].unsqueeze(0).cuda() | |
cam_T = view_camera[:3, 3].unsqueeze(0).cuda() | |
vis_video_imgs = [] | |
out_path = f'{seq_folder}/vis_output_{str(uuid.uuid4())}.mp4' | |
writer = imageio.get_writer(out_path, fps=30, mode='I', | |
format='FFMPEG', macro_block_size=1) | |
renderer.set_ground(100, 0, 0) | |
for img_i, _ in enumerate(image_names): | |
vertices_left = left_dict['vertices'][:, img_i] | |
vertices_right = right_dict['vertices'][:, img_i] | |
cameras, lights = renderer.create_camera_from_cv(cam_R, cam_T) | |
verts_color = torch.tensor([0.207, 0.596, 0.792, 1.0]).unsqueeze(0).repeat(2, 1) | |
vertices_i = torch.stack((vertices_left, vertices_right)) | |
rend, _ = renderer.render_multiple(vertices_i.cuda(), faces_all.cuda(), verts_color.cuda(), cameras, lights) | |
writer.append_data(rend) | |
writer.close() | |
print("finish") | |
return out_path | |
header = (''' | |
<div class="embed_hidden" style="text-align: center;"> | |
<h1> <b>HaWoR</b>: World-Space Hand Motion Reconstruction from Egocentric Videos</h1> | |
<h3> | |
<a href="" target="_blank" rel="noopener noreferrer">Jinglei Zhang</a><sup>1</sup>, | |
<a href="https://jiankangdeng.github.io/" target="_blank" rel="noopener noreferrer">Jiankang Deng</a><sup>2</sup>, | |
<br> | |
<a href="https://scholar.google.com/citations?user=syoPhv8AAAAJ&hl=en" target="_blank" rel="noopener noreferrer">Chao Ma</a><sup>1</sup>, | |
<a href="https://rolpotamias.github.io" target="_blank" rel="noopener noreferrer">Rolandos Alexandros Potamias</a><sup>2</sup> | |
</h3> | |
<h3> | |
<sup>1</sup>Shanghai Jiao Tong University; | |
<sup>2</sup>Imperial College London | |
</h3> | |
</div> | |
<div style="display:flex; gap: 0.3rem; justify-content: center; align-items: center;" align="center"> | |
<a href='https://arxiv.org/abs/2501.02973'><img src='https://img.shields.io/badge/Arxiv-2501.02973-A42C25?style=flat&logo=arXiv&logoColor=A42C25'></a> | |
<a href='https://arxiv.org/pdf/2501.02973'><img src='https://img.shields.io/badge/Paper-PDF-yellow?style=flat&logo=arXiv&logoColor=yellow'></a> | |
<a href='https://hawor-project.github.io/'><img src='https://img.shields.io/badge/Project-Page-%23df5b46?style=flat&logo=Google%20chrome&logoColor=%23df5b46'></a> | |
<a href='https://github.com/ThunderVVV/HaWoR'><img src='https://img.shields.io/badge/GitHub-Code-black?style=flat&logo=github&logoColor=white'></a> | |
<a href='https://huggingface.co/spaces/ThunderVVV/HaWoR'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Demo-green'></a> | |
''') | |
with gr.Blocks(title="HaWoR: World-Space Hand Motion Reconstruction from Egocentric Videos", css=".gradio-container") as demo: | |
gr.Markdown(header) | |
with gr.Row(): | |
with gr.Column(): | |
input_video = gr.Video(label="Input video", sources=["upload"]) | |
img_focal = gr.Number(label="Focal Length", value=600) | |
# threshold = gr.Slider(value=0.3, minimum=0.05, maximum=0.95, step=0.05, label='Detection Confidence Threshold') | |
#nms = gr.Slider(value=0.5, minimum=0.05, maximum=0.95, step=0.05, label='IoU NMS Threshold') | |
submit = gr.Button("Submit", variant="primary") | |
with gr.Column(): | |
reconstruction = gr.Video(label="Reconstruction",show_download_button=True) | |
# hands_detected = gr.Textbox(label="Hands Detected") | |
submit.click(fn=render_reconstruction, inputs=[input_video, img_focal], outputs=[reconstruction]) | |
with gr.Row(): | |
example_images = gr.Examples([ | |
['./example/video_0.mp4'], | |
['./example/segment_037.mp4'], | |
['./example/segment_018.mp4'] | |
], | |
inputs=input_video) | |
demo.launch(debug=True) |