File size: 11,443 Bytes
c33d1b8
c1d7f36
7fb4aa3
8b6ae1b
ca63a5c
7388ff5
a18bffa
 
7388ff5
 
 
fd197d1
 
44b4275
 
 
1523151
 
 
fd197d1
 
ca63a5c
b56d61a
ca63a5c
c1d7f36
ca63a5c
 
 
 
 
 
 
 
 
 
923e631
ca63a5c
829e8f8
ca63a5c
89befaf
 
923e631
 
fd197d1
7fb4aa3
981eadf
 
 
153a6a8
 
 
 
 
 
981eadf
 
c33d1b8
d58199d
7fb4aa3
 
 
 
 
 
 
 
 
 
 
d58199d
 
 
 
 
 
7fb4aa3
 
981eadf
 
7fb4aa3
 
d58199d
 
 
 
 
7fb4aa3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
981eadf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b6ae1b
 
981eadf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b6ae1b
7fb4aa3
 
 
 
 
 
 
 
 
 
b7eedf7
7fb4aa3
 
 
 
 
 
 
 
20771ca
 
7fb4aa3
 
f00a466
7fb4aa3
 
 
e3b8f47
7fb4aa3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7268007
d50e4bf
7268007
7fb4aa3
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import gradio as gr
import spaces
import os
import uuid
import subprocess
import torch 

print("check torch and cuda version, they must be 2.4.0 + 12.1:")
print(torch.__version__)
print(torch.version.cuda)

# download model
print("Downloading model weights")
os.system('wget -q https://huggingface.co/ThunderVVV/HaWoR/resolve/main/external/metric_depth_vit_large_800k.pth -P ./thirdparty/Metric3D/weights/')
os.system('wget -q https://huggingface.co/ThunderVVV/HaWoR/resolve/main/external/droid.pth -P ./weights/external/')
os.system('wget -q https://huggingface.co/ThunderVVV/HaWoR/resolve/main/external/detector.pt -P ./weights/external/')
os.system('wget -q https://huggingface.co/ThunderVVV/HaWoR/resolve/main/hawor/checkpoints/hawor.ckpt -P ./weights/hawor/checkpoints/')
os.system('wget -q https://huggingface.co/ThunderVVV/HaWoR/resolve/main/hawor/checkpoints/infiller.pt -P ./weights/hawor/checkpoints/')
os.system('wget -q https://huggingface.co/ThunderVVV/HaWoR/resolve/main/hawor/model_config.yaml -P ./weights/hawor/')


def install_cuda_toolkit():
    CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.1.0/local_installers/cuda_12.1.0_530.30.02_linux.run"
    CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
    subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
    subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE])
    subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"])

    os.environ["CUDA_HOME"] = "/usr/local/cuda"
    os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"])
    os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % (
        os.environ["CUDA_HOME"],
        "" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"],
    )
    os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6"
    

print("Compling other packages")
install_cuda_toolkit()
os.system('pip install ./thirdparty/DROID-SLAM')
os.system('pip install ./thirdparty/DROID-SLAM/thirdparty/lietorch')
os.environ["FORCE_CUDA"] = "1"
os.system('pip install git+https://github.com/facebookresearch/pytorch3d.git@stable')

import numpy as np
import joblib
import cv2
import imageio
from easydict import EasyDict
from scripts.scripts_test_video.detect_track_video import detect_track_video
from scripts.scripts_test_video.hawor_video import hawor_motion_estimation, hawor_infiller
from scripts.scripts_test_video.hawor_slam import hawor_slam
from hawor.utils.process import get_mano_faces, run_mano, run_mano_left
from lib.eval_utils.custom_utils import load_slam_cam
from lib.vis.run_vis2 import lookat_matrix, run_vis2_on_video, run_vis2_on_video_cam
from lib.vis.renderer_world import Renderer

# @spaces.GPU(duration=200)
def render_reconstruction(input_video, img_focal): 
    args = EasyDict()
    args.video_path = input_video
    args.input_type = 'file'
    args.checkpoint = './weights/hawor/checkpoints/hawor.ckpt'
    args.infiller_weight = './weights/hawor/checkpoints/infiller.pt'
    args.vis_mode = 'world'
    args.img_focal = img_focal
    
    start_idx, end_idx, seq_folder, imgfiles = detect_track_video(args)

    if os.path.exists(f'{seq_folder}/tracks_{start_idx}_{end_idx}/frame_chunks_all.npy'):
        print("skip hawor motion estimation")
        frame_chunks_all = joblib.load(f'{seq_folder}/tracks_{start_idx}_{end_idx}/frame_chunks_all.npy')
        img_focal = args.img_focal
    else:
        frame_chunks_all, img_focal = hawor_motion_estimation(args, start_idx, end_idx, seq_folder)

    slam_path = os.path.join(seq_folder, f"SLAM/hawor_slam_w_scale_{start_idx}_{end_idx}.npz")
    if not os.path.exists(slam_path):
        hawor_slam(args, start_idx, end_idx)
    R_w2c_sla_all, t_w2c_sla_all, R_c2w_sla_all, t_c2w_sla_all = load_slam_cam(slam_path)

    out_path = infiller_and_vis(args, start_idx, end_idx, frame_chunks_all, R_w2c_sla_all, t_w2c_sla_all, R_c2w_sla_all, t_c2w_sla_all, seq_folder, imgfiles)
    return out_path

@spaces.GPU(duration=80)
def infiller_and_vis(args, start_idx, end_idx, frame_chunks_all, R_w2c_sla_all, t_w2c_sla_all, R_c2w_sla_all, t_c2w_sla_all, seq_folder, imgfiles):
    pred_trans, pred_rot, pred_hand_pose, pred_betas, pred_valid = hawor_infiller(args, start_idx, end_idx, frame_chunks_all)

    # vis sequence for this video
    hand2idx = {
        "right": 1,
        "left": 0
    }
    vis_start = 0
    vis_end = pred_trans.shape[1] - 1
            
    # get faces
    faces = get_mano_faces()
    faces_new = np.array([[92, 38, 234],
            [234, 38, 239],
            [38, 122, 239],
            [239, 122, 279],
            [122, 118, 279],
            [279, 118, 215],
            [118, 117, 215],
            [215, 117, 214],
            [117, 119, 214],
            [214, 119, 121],
            [119, 120, 121],
            [121, 120, 78],
            [120, 108, 78],
            [78, 108, 79]])
    faces_right = np.concatenate([faces, faces_new], axis=0)

    # get right hand vertices
    hand = 'right'
    hand_idx = hand2idx[hand]
    pred_glob_r = run_mano(pred_trans[hand_idx:hand_idx+1, vis_start:vis_end], pred_rot[hand_idx:hand_idx+1, vis_start:vis_end], pred_hand_pose[hand_idx:hand_idx+1, vis_start:vis_end], betas=pred_betas[hand_idx:hand_idx+1, vis_start:vis_end])
    right_verts = pred_glob_r['vertices'][0]
    right_dict = {
            'vertices': right_verts.unsqueeze(0),
            'faces': faces_right,
        }

    # get left hand vertices
    faces_left = faces_right[:,[0,2,1]]
    hand = 'left'
    hand_idx = hand2idx[hand]
    pred_glob_l = run_mano_left(pred_trans[hand_idx:hand_idx+1, vis_start:vis_end], pred_rot[hand_idx:hand_idx+1, vis_start:vis_end], pred_hand_pose[hand_idx:hand_idx+1, vis_start:vis_end], betas=pred_betas[hand_idx:hand_idx+1, vis_start:vis_end])
    left_verts = pred_glob_l['vertices'][0]
    left_dict = {
            'vertices': left_verts.unsqueeze(0),
            'faces': faces_left,
        }

    R_x = torch.tensor([[1,  0,  0],
                        [0, -1,  0],
                        [0,  0, -1]]).float()
    R_c2w_sla_all = torch.einsum('ij,njk->nik', R_x, R_c2w_sla_all)
    t_c2w_sla_all = torch.einsum('ij,nj->ni', R_x, t_c2w_sla_all)
    R_w2c_sla_all = R_c2w_sla_all.transpose(-1, -2)
    t_w2c_sla_all = -torch.einsum("bij,bj->bi", R_w2c_sla_all, t_c2w_sla_all)
    left_dict['vertices'] = torch.einsum('ij,btnj->btni', R_x, left_dict['vertices'].cpu())
    right_dict['vertices'] = torch.einsum('ij,btnj->btni', R_x, right_dict['vertices'].cpu())
    
    # simple visualization
    bin_size = 128
    max_faces_per_bin = 20000
    img = cv2.imread(imgfiles[0])
    renderer = Renderer(img.shape[1], img.shape[0], 1800, 'cuda', 
                    bin_size=bin_size, max_faces_per_bin=max_faces_per_bin)

    output_pth = os.path.join(seq_folder, f"vis_{vis_start}_{vis_end}")
    if not os.path.exists(output_pth):
        os.makedirs(output_pth)
    image_names = imgfiles[vis_start:vis_end]
    print(f"vis {vis_start} to {vis_end}")
    # vis_video_path = run_vis2_on_video(left_dict, right_dict, output_pth, img_focal, image_names, R_c2w=R_c2w_sla_all[vis_start:vis_end], t_c2w=t_c2w_sla_all[vis_start:vis_end], interactive=False)
    faces_left = torch.from_numpy(faces_left).cuda()
    faces_right = torch.from_numpy(faces_right).cuda()
    faces_all = torch.stack((faces_left, faces_right))

    side_source = torch.tensor([0.463, -0.478, 2.456])
    side_target = torch.tensor([0.026, -0.481, -3.184])
    up = torch.tensor([1.0, 0.0, 0.0])
    view_camera = lookat_matrix(side_source, side_target, up)
    cam_R = view_camera[:3, :3].unsqueeze(0).cuda()
    cam_T = view_camera[:3, 3].unsqueeze(0).cuda()
    vis_video_imgs = []
    out_path = f'{seq_folder}/vis_output_{str(uuid.uuid4())}.mp4' 
    writer = imageio.get_writer(out_path, fps=30, mode='I', 
                        format='FFMPEG', macro_block_size=1)
    renderer.set_ground(100, 0, 0)
    for img_i, _ in enumerate(image_names):

        vertices_left = left_dict['vertices'][:, img_i]
        vertices_right = right_dict['vertices'][:, img_i]

        cameras, lights = renderer.create_camera_from_cv(cam_R, cam_T)
        verts_color = torch.tensor([0.207, 0.596, 0.792, 1.0]).unsqueeze(0).repeat(2, 1)
        vertices_i = torch.stack((vertices_left, vertices_right))
        rend, _ = renderer.render_multiple(vertices_i.cuda(), faces_all.cuda(), verts_color.cuda(), cameras, lights)

        writer.append_data(rend)

    writer.close()
    print("finish")
        
    return out_path     



header = ('''
<div class="embed_hidden" style="text-align: center;">
    <h1> <b>HaWoR</b>: World-Space Hand Motion Reconstruction from Egocentric Videos</h1>
    <h3>
        <a href="" target="_blank" rel="noopener noreferrer">Jinglei Zhang</a><sup>1</sup>,        
        <a href="https://jiankangdeng.github.io/" target="_blank" rel="noopener noreferrer">Jiankang Deng</a><sup>2</sup>,
        <br>
        <a href="https://scholar.google.com/citations?user=syoPhv8AAAAJ&hl=en" target="_blank" rel="noopener noreferrer">Chao Ma</a><sup>1</sup>,
        <a href="https://rolpotamias.github.io" target="_blank" rel="noopener noreferrer">Rolandos Alexandros Potamias</a><sup>2</sup>
    </h3>
    <h3>
        <sup>1</sup>Shanghai Jiao Tong University;
        <sup>2</sup>Imperial College London
    </h3>
</div>
<div style="display:flex; gap: 0.3rem; justify-content: center; align-items: center;" align="center">
<a href='https://arxiv.org/abs/2501.02973'><img src='https://img.shields.io/badge/Arxiv-2501.02973-A42C25?style=flat&logo=arXiv&logoColor=A42C25'></a> 
<a href='https://arxiv.org/pdf/2501.02973'><img src='https://img.shields.io/badge/Paper-PDF-yellow?style=flat&logo=arXiv&logoColor=yellow'></a> 
<a href='https://hawor-project.github.io/'><img src='https://img.shields.io/badge/Project-Page-%23df5b46?style=flat&logo=Google%20chrome&logoColor=%23df5b46'></a> 
<a href='https://github.com/ThunderVVV/HaWoR'><img src='https://img.shields.io/badge/GitHub-Code-black?style=flat&logo=github&logoColor=white'></a> 
<a href='https://huggingface.co/spaces/ThunderVVV/HaWoR'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Demo-green'></a>
''')


with gr.Blocks(title="HaWoR: World-Space Hand Motion Reconstruction from Egocentric Videos", css=".gradio-container") as demo:

    gr.Markdown(header)

    with gr.Row():
        with gr.Column():
            input_video = gr.Video(label="Input video", sources=["upload"])
            img_focal = gr.Number(label="Focal Length", value=600)
            # threshold = gr.Slider(value=0.3, minimum=0.05, maximum=0.95, step=0.05, label='Detection Confidence Threshold')
            #nms = gr.Slider(value=0.5, minimum=0.05, maximum=0.95, step=0.05, label='IoU NMS Threshold')
            submit = gr.Button("Submit", variant="primary")
        
        
        with gr.Column():
            reconstruction = gr.Video(label="Reconstruction",show_download_button=True)
            # hands_detected = gr.Textbox(label="Hands Detected")
    
        submit.click(fn=render_reconstruction, inputs=[input_video, img_focal], outputs=[reconstruction])

    with gr.Row():
        
        example_images = gr.Examples([
            ['./example/video_0.mp4'],
            ['./example/segment_037.mp4'],
            ['./example/segment_018.mp4']
            ], 
            inputs=input_video)
    
demo.launch(debug=True)