Spaces:
Running
Running
ThunderVVV
commited on
Commit
·
7fb4aa3
1
Parent(s):
9ef4431
update
Browse files- app.py +165 -4
- lib/vis/run_vis2.py +10 -3
- lib/vis/viewer.py +1 -0
app.py
CHANGED
@@ -1,7 +1,168 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
def greet(name):
|
4 |
-
return "Hello " + name + "!!"
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
# import spaces
|
3 |
+
import sys
|
4 |
+
import os
|
5 |
+
import torch
|
6 |
+
import numpy as np
|
7 |
+
import joblib
|
8 |
+
from easydict import EasyDict
|
9 |
+
from scripts.scripts_test_video.detect_track_video import detect_track_video
|
10 |
+
from scripts.scripts_test_video.hawor_video import hawor_motion_estimation, hawor_infiller
|
11 |
+
from scripts.scripts_test_video.hawor_slam import hawor_slam
|
12 |
+
from hawor.utils.process import get_mano_faces, run_mano, run_mano_left
|
13 |
+
from lib.eval_utils.custom_utils import load_slam_cam
|
14 |
+
from lib.vis.run_vis2 import run_vis2_on_video, run_vis2_on_video_cam
|
15 |
|
|
|
|
|
16 |
|
17 |
+
def render_reconstruction(input_video, img_focal):
|
18 |
+
args = EasyDict()
|
19 |
+
args.video_path = input_video
|
20 |
+
args.input_type = 'file'
|
21 |
+
args.checkpoint = './weights/hawor/checkpoints/hawor.ckpt'
|
22 |
+
args.infiller_weight = './weights/hawor/checkpoints/infiller.pt'
|
23 |
+
args.vis_mode = 'world'
|
24 |
+
args.img_focal = img_focal
|
25 |
+
|
26 |
+
start_idx, end_idx, seq_folder, imgfiles = detect_track_video(args)
|
27 |
+
|
28 |
+
frame_chunks_all, img_focal = hawor_motion_estimation(args, start_idx, end_idx, seq_folder)
|
29 |
+
|
30 |
+
hawor_slam(args, start_idx, end_idx)
|
31 |
+
slam_path = os.path.join(seq_folder, f"SLAM/hawor_slam_w_scale_{start_idx}_{end_idx}.npz")
|
32 |
+
R_w2c_sla_all, t_w2c_sla_all, R_c2w_sla_all, t_c2w_sla_all = load_slam_cam(slam_path)
|
33 |
+
|
34 |
+
pred_trans, pred_rot, pred_hand_pose, pred_betas, pred_valid = hawor_infiller(args, start_idx, end_idx, frame_chunks_all)
|
35 |
+
|
36 |
+
# vis sequence for this video
|
37 |
+
hand2idx = {
|
38 |
+
"right": 1,
|
39 |
+
"left": 0
|
40 |
+
}
|
41 |
+
vis_start = 0
|
42 |
+
vis_end = pred_trans.shape[1] - 1
|
43 |
+
|
44 |
+
# get faces
|
45 |
+
faces = get_mano_faces()
|
46 |
+
faces_new = np.array([[92, 38, 234],
|
47 |
+
[234, 38, 239],
|
48 |
+
[38, 122, 239],
|
49 |
+
[239, 122, 279],
|
50 |
+
[122, 118, 279],
|
51 |
+
[279, 118, 215],
|
52 |
+
[118, 117, 215],
|
53 |
+
[215, 117, 214],
|
54 |
+
[117, 119, 214],
|
55 |
+
[214, 119, 121],
|
56 |
+
[119, 120, 121],
|
57 |
+
[121, 120, 78],
|
58 |
+
[120, 108, 78],
|
59 |
+
[78, 108, 79]])
|
60 |
+
faces_right = np.concatenate([faces, faces_new], axis=0)
|
61 |
+
|
62 |
+
# get right hand vertices
|
63 |
+
hand = 'right'
|
64 |
+
hand_idx = hand2idx[hand]
|
65 |
+
pred_glob_r = run_mano(pred_trans[hand_idx:hand_idx+1, vis_start:vis_end], pred_rot[hand_idx:hand_idx+1, vis_start:vis_end], pred_hand_pose[hand_idx:hand_idx+1, vis_start:vis_end], betas=pred_betas[hand_idx:hand_idx+1, vis_start:vis_end])
|
66 |
+
right_verts = pred_glob_r['vertices'][0]
|
67 |
+
right_dict = {
|
68 |
+
'vertices': right_verts.unsqueeze(0),
|
69 |
+
'faces': faces_right,
|
70 |
+
}
|
71 |
+
|
72 |
+
# get left hand vertices
|
73 |
+
faces_left = faces_right[:,[0,2,1]]
|
74 |
+
hand = 'left'
|
75 |
+
hand_idx = hand2idx[hand]
|
76 |
+
pred_glob_l = run_mano_left(pred_trans[hand_idx:hand_idx+1, vis_start:vis_end], pred_rot[hand_idx:hand_idx+1, vis_start:vis_end], pred_hand_pose[hand_idx:hand_idx+1, vis_start:vis_end], betas=pred_betas[hand_idx:hand_idx+1, vis_start:vis_end])
|
77 |
+
left_verts = pred_glob_l['vertices'][0]
|
78 |
+
left_dict = {
|
79 |
+
'vertices': left_verts.unsqueeze(0),
|
80 |
+
'faces': faces_left,
|
81 |
+
}
|
82 |
+
|
83 |
+
R_x = torch.tensor([[1, 0, 0],
|
84 |
+
[0, -1, 0],
|
85 |
+
[0, 0, -1]]).float()
|
86 |
+
R_c2w_sla_all = torch.einsum('ij,njk->nik', R_x, R_c2w_sla_all)
|
87 |
+
t_c2w_sla_all = torch.einsum('ij,nj->ni', R_x, t_c2w_sla_all)
|
88 |
+
R_w2c_sla_all = R_c2w_sla_all.transpose(-1, -2)
|
89 |
+
t_w2c_sla_all = -torch.einsum("bij,bj->bi", R_w2c_sla_all, t_c2w_sla_all)
|
90 |
+
left_dict['vertices'] = torch.einsum('ij,btnj->btni', R_x, left_dict['vertices'].cpu())
|
91 |
+
right_dict['vertices'] = torch.einsum('ij,btnj->btni', R_x, right_dict['vertices'].cpu())
|
92 |
+
|
93 |
+
# Here we use aitviewer(https://github.com/eth-ait/aitviewer) for simple visualization.
|
94 |
+
if args.vis_mode == 'world':
|
95 |
+
output_pth = os.path.join(seq_folder, f"vis_{vis_start}_{vis_end}")
|
96 |
+
if not os.path.exists(output_pth):
|
97 |
+
os.makedirs(output_pth)
|
98 |
+
image_names = imgfiles[vis_start:vis_end]
|
99 |
+
print(f"vis {vis_start} to {vis_end}")
|
100 |
+
vis_video_path = run_vis2_on_video(left_dict, right_dict, output_pth, img_focal, image_names, R_c2w=R_c2w_sla_all[vis_start:vis_end], t_c2w=t_c2w_sla_all[vis_start:vis_end], interactive=False)
|
101 |
+
elif args.vis_mode == 'cam':
|
102 |
+
# output_pth = os.path.join(seq_folder, f"vis_{vis_start}_{vis_end}")
|
103 |
+
# if not os.path.exists(output_pth):
|
104 |
+
# os.makedirs(output_pth)
|
105 |
+
# image_names = imgfiles[vis_start:vis_end]
|
106 |
+
# print(f"vis {vis_start} to {vis_end}")
|
107 |
+
# run_vis2_on_video_cam(left_dict, right_dict, output_pth, img_focal, image_names, R_w2c=R_w2c_sla_all[vis_start:vis_end], t_w2c=t_w2c_sla_all[vis_start:vis_end])
|
108 |
+
raise NotImplementedError
|
109 |
+
|
110 |
+
return vis_video_path
|
111 |
+
|
112 |
+
# @spaces.GPU()
|
113 |
+
def run_wilow_model(image, conf, IoU_threshold=0.5):
|
114 |
+
img_cv2 = image[...,::-1]
|
115 |
+
return img_vis.astype(np.float32)/255.0, len(detections), None
|
116 |
+
|
117 |
+
|
118 |
+
|
119 |
+
header = ('''
|
120 |
+
<div class="embed_hidden" style="text-align: center;">
|
121 |
+
<h1> <b>HaWoR</b>: World-Space Hand Motion Reconstruction from Egocentric Videos</h1>
|
122 |
+
<h3>
|
123 |
+
<a href="" target="_blank" rel="noopener noreferrer">Jinglei Zhang</a><sup>1</sup>,
|
124 |
+
<a href="https://jiankangdeng.github.io/" target="_blank" rel="noopener noreferrer">Jiankang Deng</a><sup>2</sup>,
|
125 |
+
<br>
|
126 |
+
<a href="https://scholar.google.com/citations?user=syoPhv8AAAAJ&hl=en" target="_blank" rel="noopener noreferrer">Chao Ma</a><sup>1</sup>
|
127 |
+
<a href="https://rolpotamias.github.io" target="_blank" rel="noopener noreferrer">Rolandos Alexandros Potamias</a><sup>2</sup>
|
128 |
+
</h3>
|
129 |
+
<h3>
|
130 |
+
<sup>1</sup>Shanghai Jiao Tong University;
|
131 |
+
<sup>2</sup>Imperial College London
|
132 |
+
</h3>
|
133 |
+
</div>
|
134 |
+
<div style="display:flex; gap: 0.3rem; justify-content: center; align-items: center;" align="center">
|
135 |
+
<a href='https://arxiv.org/abs/xxxx.xxxxx'><img src='https://img.shields.io/badge/Arxiv-xxxx.xxxxx-A42C25?style=flat&logo=arXiv&logoColor=A42C25'></a>
|
136 |
+
<a href=''><img src='https://img.shields.io/badge/Paper-PDF-yellow?style=flat&logo=arXiv&logoColor=yellow'></a>
|
137 |
+
<a href='https://hawor-project.github.io/'><img src='https://img.shields.io/badge/Project-Page-%23df5b46?style=flat&logo=Google%20chrome&logoColor=%23df5b46'></a>
|
138 |
+
<a href='https://github.com/ThunderVVV/HaWoR'><img src='https://img.shields.io/badge/GitHub-Code-black?style=flat&logo=github&logoColor=white'></a>
|
139 |
+
''')
|
140 |
+
|
141 |
+
|
142 |
+
with gr.Blocks(title="HaWoR: World-Space Hand Motion Reconstruction from Egocentric Videos", css=".gradio-container") as demo:
|
143 |
+
|
144 |
+
gr.Markdown(header)
|
145 |
+
|
146 |
+
with gr.Row():
|
147 |
+
with gr.Column():
|
148 |
+
input_video = gr.Video(label="Input video", sources=["upload"])
|
149 |
+
img_focal = gr.Number(label="Focal Length", value=600)
|
150 |
+
# threshold = gr.Slider(value=0.3, minimum=0.05, maximum=0.95, step=0.05, label='Detection Confidence Threshold')
|
151 |
+
#nms = gr.Slider(value=0.5, minimum=0.05, maximum=0.95, step=0.05, label='IoU NMS Threshold')
|
152 |
+
submit = gr.Button("Submit", variant="primary")
|
153 |
+
|
154 |
+
|
155 |
+
with gr.Column():
|
156 |
+
reconstruction = gr.Video(label="Reconstruction",show_download_button=True)
|
157 |
+
# hands_detected = gr.Textbox(label="Hands Detected")
|
158 |
+
|
159 |
+
submit.click(fn=render_reconstruction, inputs=[input_video, img_focal], outputs=[reconstruction])
|
160 |
+
|
161 |
+
with gr.Row():
|
162 |
+
|
163 |
+
example_images = gr.Examples([
|
164 |
+
['./example/video_0.mp4']
|
165 |
+
],
|
166 |
+
inputs=input_video)
|
167 |
+
|
168 |
+
demo.launch(debug=True)
|
lib/vis/run_vis2.py
CHANGED
@@ -36,7 +36,7 @@ def camera_marker_geometry(radius, height):
|
|
36 |
return vertices, faces, face_colors
|
37 |
|
38 |
|
39 |
-
def run_vis2_on_video(res_dict, res_dict2, output_pth, focal_length, image_names, R_c2w=None, t_c2w=None):
|
40 |
|
41 |
img0 = cv2.imread(image_names[0])
|
42 |
height, width, _ = img0.shape
|
@@ -132,8 +132,15 @@ def run_vis2_on_video(res_dict, res_dict2, output_pth, focal_length, image_names
|
|
132 |
data = viewer_utils.ViewerData(viewer_Rt, K, vis_w, vis_h)
|
133 |
batch = (meshes, data)
|
134 |
|
135 |
-
|
136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
def run_vis2_on_video_cam(res_dict, res_dict2, output_pth, focal_length, image_names, R_w2c=None, t_w2c=None):
|
139 |
|
|
|
36 |
return vertices, faces, face_colors
|
37 |
|
38 |
|
39 |
+
def run_vis2_on_video(res_dict, res_dict2, output_pth, focal_length, image_names, R_c2w=None, t_c2w=None, interactive=True):
|
40 |
|
41 |
img0 = cv2.imread(image_names[0])
|
42 |
height, width, _ = img0.shape
|
|
|
132 |
data = viewer_utils.ViewerData(viewer_Rt, K, vis_w, vis_h)
|
133 |
batch = (meshes, data)
|
134 |
|
135 |
+
if interactive:
|
136 |
+
viewer = viewer_utils.ARCTICViewer(interactive=True, size=(vis_w, vis_h))
|
137 |
+
viewer.render_seq(batch, out_folder=os.path.join(output_pth, 'aitviewer'))
|
138 |
+
else:
|
139 |
+
viewer = viewer_utils.ARCTICViewer(interactive=False, size=(vis_w, vis_h), render_types=['video'])
|
140 |
+
if os.path.exists(os.path.join(output_pth, 'aitviewer', "video_0.mp4")):
|
141 |
+
os.remove(os.path.join(output_pth, 'aitviewer', "video_0.mp4"))
|
142 |
+
viewer.render_seq(batch, out_folder=os.path.join(output_pth, 'aitviewer'))
|
143 |
+
return os.path.join(output_pth, 'aitviewer', "video_0.mp4")
|
144 |
|
145 |
def run_vis2_on_video_cam(res_dict, res_dict2, output_pth, focal_length, image_names, R_w2c=None, t_w2c=None):
|
146 |
|
lib/vis/viewer.py
CHANGED
@@ -108,6 +108,7 @@ class ARCTICViewer:
|
|
108 |
if "video" in self.render_types:
|
109 |
vid_p = op.join(out_folder, "video.mp4")
|
110 |
v.save_video(video_dir=vid_p)
|
|
|
111 |
|
112 |
pbar = tqdm(range(num_iter))
|
113 |
for fidx in pbar:
|
|
|
108 |
if "video" in self.render_types:
|
109 |
vid_p = op.join(out_folder, "video.mp4")
|
110 |
v.save_video(video_dir=vid_p)
|
111 |
+
return
|
112 |
|
113 |
pbar = tqdm(range(num_iter))
|
114 |
for fidx in pbar:
|