Image-Gen / app.py
Profakerr's picture
Update app.py
b7a803e verified
raw
history blame
5.07 kB
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler, AutoencoderKL
from transformers import CLIPTextModel, CLIPTokenizer
import torch
import gradio as gr
import spaces
lora_path = "OedoSoldier/detail-tweaker-lora"
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse").to("cuda")
@spaces.GPU
def generate_image(prompt, negative_prompt, num_inference_steps=30, guidance_scale=7.0,model="Real6.0",num_images=1, width=512, height=512):
if model == "Real5.0":
model_id = "SG161222/Realistic_Vision_V5.0_noVAE"
elif model == "Real5.1":
model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
else:
model_id = "SG161222/Realistic_Vision_V6.0_B1_noVAE"
text_encoder = CLIPTextModel.from_pretrained(
model_id,
subfolder="text_encoder"
).to("cuda")
tokenizer = CLIPTokenizer.from_pretrained(
model_id,
subfolder="tokenizer"
)
pipe = DiffusionPipeline.from_pretrained(
model_id,
text_encoder=text_encoder,
tokenizer=tokenizer,
vae=vae
).to("cuda")
if model == "Real6.0":
pipe.safety_checker = lambda images, **kwargs: (images, [False] * len(images))
pipe.load_lora_weights(lora_path)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(
pipe.scheduler.config,
algorithm_type="dpmsolver++",
use_karras_sigmas=True
)
text_inputs = tokenizer(
prompt,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt"
).to("cuda")
negative_text_inputs = tokenizer(
negative_prompt,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt"
).to("cuda")
prompt_embeds = text_encoder(text_inputs.input_ids)[0]
negative_prompt_embeds = text_encoder(negative_text_inputs.input_ids)[0]
# Generate the image
result = pipe(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
cross_attention_kwargs={"scale": 1},
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
width=width,
height=height,
num_images_per_prompt=num_images
)
return result.images
title = """<h1 align="center">ProFaker</h1>"""
# Create the Gradio interface
with gr.Blocks() as demo:
gr.HTML(title)
with gr.Row():
with gr.Column():
# Input components
prompt = gr.Textbox(
label="Prompt",
info="Enter your image description here...",
lines=3
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
info="Enter what you don't want in Image...",
lines=3
)
generate_button = gr.Button("Generate Image")
with gr.Accordion("Advanced Options", open=False):
model = gr.Dropdown(
choices=["Real6.0","Real5.1","Real5.0"],
value="Real6.0",
label="Model",
)
num_images = gr.Slider( # New slider for number of images
minimum=1,
maximum=4,
value=1,
step=1,
label="Number of Images to Generate"
)
width = gr.Slider(
minimum=256,
maximum=1024,
value=512,
step=64,
label="Image Width"
)
height = gr.Slider(
minimum=256,
maximum=1024,
value=512,
step=64,
label="Image Height"
)
steps_slider = gr.Slider(
minimum=1,
maximum=100,
value=30,
step=1,
label="Number of Steps"
)
guidance_slider = gr.Slider(
minimum=1,
maximum=10,
value=7.0,
step=0.5,
label="Guidance Scale"
)
with gr.Column():
# Output component
gallery = gr.Gallery(
label="Generated Images",
show_label=True,
elem_id="gallery",
columns=2,
rows=2
)
# Connect the interface to the generation function
generate_button.click(
fn=generate_image,
inputs=[prompt, negative_prompt, steps_slider, guidance_slider, model, num_images, width, height],
outputs=gallery
)
demo.queue(max_size=10).launch(share=False)