Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler, AutoencoderKL
|
|
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
import spaces
|
@@ -18,9 +19,23 @@ def generate_image(prompt, negative_prompt, num_inference_steps=30, guidance_sca
|
|
18 |
|
19 |
else:
|
20 |
model_id = "SG161222/Realistic_Vision_V6.0_B1_noVAE"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
24 |
|
25 |
if model == "Real6.0":
|
26 |
pipe.safety_checker = lambda images, **kwargs: (images, [False] * len(images))
|
@@ -33,16 +48,35 @@ def generate_image(prompt, negative_prompt, num_inference_steps=30, guidance_sca
|
|
33 |
use_karras_sigmas=True
|
34 |
)
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
# Generate the image
|
38 |
result = pipe(
|
39 |
-
|
40 |
-
|
41 |
-
cross_attention_kwargs
|
42 |
-
num_inference_steps
|
43 |
-
guidance_scale
|
44 |
-
width
|
45 |
-
height
|
46 |
num_images_per_prompt=num_images
|
47 |
)
|
48 |
|
|
|
1 |
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler, AutoencoderKL
|
2 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
3 |
import torch
|
4 |
import gradio as gr
|
5 |
import spaces
|
|
|
19 |
|
20 |
else:
|
21 |
model_id = "SG161222/Realistic_Vision_V6.0_B1_noVAE"
|
22 |
+
|
23 |
+
text_encoder = CLIPTextModel.from_pretrained(
|
24 |
+
model_id,
|
25 |
+
subfolder="text_encoder"
|
26 |
+
).to("cuda")
|
27 |
+
|
28 |
+
tokenizer = CLIPTokenizer.from_pretrained(
|
29 |
+
model_id,
|
30 |
+
subfolder="tokenizer"
|
31 |
+
)
|
32 |
|
33 |
+
pipe = DiffusionPipeline.from_pretrained(
|
34 |
+
model_id,
|
35 |
+
text_encoder=text_encoder,
|
36 |
+
tokenizer=tokenizer,
|
37 |
+
vae=vae
|
38 |
+
).to("cuda")
|
39 |
|
40 |
if model == "Real6.0":
|
41 |
pipe.safety_checker = lambda images, **kwargs: (images, [False] * len(images))
|
|
|
48 |
use_karras_sigmas=True
|
49 |
)
|
50 |
|
51 |
+
text_inputs = tokenizer(
|
52 |
+
prompt,
|
53 |
+
padding="max_length",
|
54 |
+
max_length=tokenizer.model_max_length,
|
55 |
+
truncation=True,
|
56 |
+
return_tensors="pt"
|
57 |
+
).to("cuda")
|
58 |
+
|
59 |
+
negative_text_inputs = tokenizer(
|
60 |
+
negative_prompt,
|
61 |
+
padding="max_length",
|
62 |
+
max_length=tokenizer.model_max_length,
|
63 |
+
truncation=True,
|
64 |
+
return_tensors="pt"
|
65 |
+
).to("cuda")
|
66 |
+
|
67 |
+
prompt_embeds = text_encoder(text_inputs.input_ids)[0]
|
68 |
+
negative_prompt_embeds = text_encoder(negative_text_inputs.input_ids)[0]
|
69 |
+
|
70 |
|
71 |
# Generate the image
|
72 |
result = pipe(
|
73 |
+
prompt_embeds=prompt_embeds,
|
74 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
75 |
+
cross_attention_kwargs={"scale": 1},
|
76 |
+
num_inference_steps=num_inference_steps,
|
77 |
+
guidance_scale=guidance_scale,
|
78 |
+
width=width,
|
79 |
+
height=height,
|
80 |
num_images_per_prompt=num_images
|
81 |
)
|
82 |
|