File size: 9,507 Bytes
5e19969
b7a803e
dffbf86
 
 
03839a8
 
 
 
 
 
05ce880
dffbf86
03839a8
 
 
dffbf86
03839a8
 
 
 
 
 
 
 
 
 
 
a2e4ef2
 
 
03839a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2e4ef2
 
 
03839a8
 
a2e4ef2
03839a8
a2e4ef2
03839a8
 
 
 
 
7410ac3
dffbf86
03839a8
ba73128
03839a8
dffbf86
 
 
 
030f732
 
dffbf86
 
5e19969
03839a8
5e19969
 
 
 
2be63db
b7a803e
 
 
 
 
 
 
 
 
5e19969
 
 
 
 
dffbf86
b7a803e
 
 
 
 
 
7f76025
03839a8
 
 
 
 
 
 
 
a2e4ef2
 
 
 
03839a8
 
a2e4ef2
 
 
 
03839a8
 
 
a2e4ef2
 
 
03839a8
 
a2e4ef2
 
 
03839a8
 
 
a2e4ef2
03839a8
a2e4ef2
03839a8
dffbf86
 
 
 
 
 
 
 
 
 
ba73128
 
 
 
 
b7a803e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dffbf86
8b7ebd7
b7a803e
 
 
 
 
 
 
ba73128
 
5c1f25d
840cd7f
ba73128
dffbf86
03839a8
 
 
 
 
 
 
 
 
 
 
309bf38
dffbf86
 
309bf38
dffbf86
 
 
 
 
 
309bf38
 
dffbf86
 
 
309bf38
 
dffbf86
03839a8
 
 
 
 
 
0a40fc9
03839a8
0a40fc9
 
030f732
0a40fc9
 
 
692438e
03839a8
 
 
 
 
 
8b7ebd7
692438e
03839a8
 
 
 
 
692438e
 
 
 
 
 
 
 
0a40fc9
 
 
e43cab8
0a40fc9
e43cab8
0a40fc9
 
 
e43cab8
 
0a40fc9
 
 
ba73128
03839a8
47525ab
 
8b7ebd7
 
 
 
 
 
 
ba73128
dffbf86
 
 
 
03839a8
ba73128
4516080
dffbf86
03839a8
 
 
dffbf86
03839a8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler, AutoencoderKL, UNet2DConditionModel
from transformers import CLIPTextModel, CLIPTokenizer
import torch
import gradio as gr
import spaces
from huggingface_hub import hf_hub_download
import os
import requests
import hashlib
from pathlib import Path
import re
import random

# Default LoRA for fallback
DEFAULT_LORA = "OedoSoldier/detail-tweaker-lora"
LORA_CACHE_DIR = "lora_cache"

def download_lora(url):
    """Download LoRA file from Civitai URL and cache it locally"""
    # Create cache directory if it doesn't exist
    os.makedirs(LORA_CACHE_DIR, exist_ok=True)
    
    # Generate a filename from the URL
    url_hash = hashlib.md5(url.encode()).hexdigest()
    local_path = os.path.join(LORA_CACHE_DIR, f"{url_hash}.safetensors")
    
    # If file already exists in cache, return the path
    if os.path.exists(local_path):
        print()
        print("********** Lora Already Exists **********")
        print()
        return local_path
    
    # Download the file
    try:
        response = requests.get(url, stream=True)
        response.raise_for_status()
        
        # Get the total file size
        total_size = int(response.headers.get('content-length', 0))
        
        # Download and save the file
        with open(local_path, 'wb') as f:
            if total_size == 0:
                f.write(response.content)
            else:
                for chunk in response.iter_content(chunk_size=8192):
                    if chunk:
                        f.write(chunk)
        print()
        print("********** Lora Downloading Successfull **********")
        print()
        return local_path
    except Exception as e:
        print()
        print(f"Error downloading LoRA: {str(e)}")
        print()
        return None

def is_civitai_url(url):
    """Check if the URL is a valid Civitai download URL"""
    return bool(re.match(r'https?://civitai\.com/api/download/models/\d+', url))

@spaces.GPU
def generate_image(prompt, negative_prompt, lora_url, num_inference_steps=30, guidance_scale=7.0, 
                  model="Real6.0", num_images=1, width=512, height=512,seed=None):
    
    if model == "Real5.0":
        model_id = "SG161222/Realistic_Vision_V5.0_noVAE"
    elif model == "Real5.1":
        model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
    elif model == "majicv7":
        model_id = "digiplay/majicMIX_realistic_v7"
    else:
        model_id = "SG161222/Realistic_Vision_V6.0_B1_noVAE"

    # Initialize models
    vae = AutoencoderKL.from_pretrained(
        model_id,
        subfolder="vae"
    ).to("cuda")

    text_encoder = CLIPTextModel.from_pretrained(
        model_id,
        subfolder="text_encoder"
    ).to("cuda")
    
    tokenizer = CLIPTokenizer.from_pretrained(
        model_id,
        subfolder="tokenizer"
    )

    unet = UNet2DConditionModel.from_pretrained(
        model_id,
        subfolder="unet"
    ).to("cuda")
        
    pipe = DiffusionPipeline.from_pretrained(
        model_id,
        text_encoder=text_encoder,
        tokenizer=tokenizer,
        vae=vae
    ).to("cuda")

    # Load LoRA weights
    try:
        if lora_url and lora_url.strip():
            if is_civitai_url(lora_url):
                # Download and load Civitai LoRA
                lora_path = download_lora(lora_url)
                if lora_path:
                    pipe.load_lora_weights(lora_path)
                    print()
                    print("********** URL Lora Loaded **********")
                    print()
                    
                else:
                    pipe.load_lora_weights(DEFAULT_LORA)
                    print()
                    print("********** Default Lora Loaded **********")
                    print()
                    
            # If it's a HuggingFace repo path
            elif '/' in lora_url and not lora_url.startswith('http'):
                pipe.load_lora_weights(lora_url)
                print()
                print("********** URL Lora Loaded **********")
                print()
            else:
                pipe.load_lora_weights(DEFAULT_LORA)
                print()
                print("********** Default Lora Loaded **********")
                print()
        else:
            pipe.load_lora_weights(DEFAULT_LORA)
    except Exception as e:
        print()
        print(f"Error loading LoRA weights: {str(e)}")
        print()
        pipe.load_lora_weights(DEFAULT_LORA)
    
    if model == "Real6.0":
        pipe.safety_checker = lambda images, **kwargs: (images, [False] * len(images))

    pipe.scheduler = DPMSolverMultistepScheduler.from_config(
        pipe.scheduler.config,
        algorithm_type="dpmsolver++",
        use_karras_sigmas=True
    )

    if seed is None:
        seed = random.randint(0, 2**32 - 1)
    
    generator = torch.manual_seed(seed)

    text_inputs = tokenizer(
        prompt,
        padding="max_length",
        max_length=tokenizer.model_max_length,
        truncation=True,
        return_tensors="pt"
    ).to("cuda")
    
    negative_text_inputs = tokenizer(
        negative_prompt,
        padding="max_length",
        max_length=tokenizer.model_max_length,
        truncation=True,
        return_tensors="pt"
    ).to("cuda")

    prompt_embeds = text_encoder(text_inputs.input_ids)[0]
    negative_prompt_embeds = text_encoder(negative_text_inputs.input_ids)[0]

    # Generate the image
    result = pipe(
        prompt_embeds=prompt_embeds,
        negative_prompt_embeds=negative_prompt_embeds,
        cross_attention_kwargs={"scale": 1},
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale,
        width=width,
        height=height,
        num_images_per_prompt=num_images,
        generator=generator
    )
    torch.cuda.empty_cache()
    return result.images,seed

def clean_lora_cache():
    """Clean the LoRA cache directory"""
    if os.path.exists(LORA_CACHE_DIR):
        for file in os.listdir(LORA_CACHE_DIR):
            file_path = os.path.join(LORA_CACHE_DIR, file)
            try:
                if os.path.isfile(file_path):
                    os.unlink(file_path)
            except Exception as e:
                print(f"Error deleting {file_path}: {str(e)}")

title = """<h1 align="center">ProFaker</h1>"""
# Create the Gradio interface
with gr.Blocks() as demo:
    gr.HTML(title)
    
    with gr.Row():
        with gr.Column():
            # Input components
            prompt = gr.Textbox(
                label="Prompt",
                info="Enter your image description here...",
                lines=3
            )
            negative_prompt = gr.Textbox(
                label="Negative Prompt",
                info="Enter what you don't want in Image...",
                lines=3
            )
            lora_input = gr.Textbox(
                label="LoRA URL/Path",
                info="Enter Civitai download URL or HuggingFace path (e.g., 'username/model-name')",
                value=DEFAULT_LORA
            )
            clear_cache = gr.Button("Clear LoRA Cache")
            generate_button = gr.Button("Generate Image")
            
            with gr.Accordion("Advanced Options", open=False):
                model = gr.Dropdown(
                    choices=["Real6.0","Real5.1","Real5.0","majicv7"],
                    value="Real6.0",
                    label="Model",
                )
                
                num_images = gr.Slider(
                    minimum=1,
                    maximum=4,
                    value=1,
                    step=1,
                    label="Number of Images to Generate"
                )
                width = gr.Slider(
                    minimum=256,
                    maximum=1024,
                    value=512,
                    step=64,
                    label="Image Width"
                )
                height = gr.Slider(
                    minimum=256,
                    maximum=1024,
                    value=512,
                    step=64,
                    label="Image Height"
                )
                steps_slider = gr.Slider(
                    minimum=1,
                    maximum=100,
                    value=30,
                    step=1,
                    label="Number of Steps"
                )
                guidance_slider = gr.Slider(
                    minimum=1,
                    maximum=10,
                    value=7.0,
                    step=0.5,
                    label="Guidance Scale"
                )
                seed_input = gr.Number(value=random.randint(0, 2**32 - 1), label="Seed (optional)")
        
        with gr.Column():
            # Output component
            gallery = gr.Gallery(
                label="Generated Images",
                show_label=True,
                elem_id="gallery",
                columns=2,
                rows=2
            )
            seed_display = gr.Textbox(label="Seed Used", interactive=False)
    
    # Connect the interface to the generation function
    generate_button.click(
        fn=generate_image,
        inputs=[prompt, negative_prompt, lora_input, steps_slider, guidance_slider, 
                model, num_images, width, height,seed_input],
        outputs=[gallery,seed_display]
    )
    
    # Connect clear cache button
    clear_cache.click(fn=clean_lora_cache)

demo.queue(max_size=10).launch(share=False)