Spaces:
Runtime error
Runtime error
# coding: utf-8 | |
# Copyright 2019 Sinovation Ventures AI Institute | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
# This file is partially derived from the code at | |
# https://github.com/huggingface/transformers/tree/master/transformers | |
# | |
# Original copyright notice: | |
# | |
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch ZEN2 model classes.""" | |
from __future__ import absolute_import, division, print_function, unicode_literals | |
import copy | |
import logging | |
import math | |
import os | |
import torch | |
from torch import nn | |
from torch.nn import CrossEntropyLoss | |
from dataclasses import dataclass | |
from typing import Optional | |
from transformers import PreTrainedModel | |
from fengshen.models.zen2.configuration_zen2 import ZenConfig | |
logger = logging.getLogger(__name__) | |
PRETRAINED_MODEL_ARCHIVE_MAP = { | |
'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-pytorch_model.bin", | |
'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-pytorch_model.bin", | |
'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-pytorch_model.bin", | |
'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-pytorch_model.bin", | |
'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-pytorch_model.bin", | |
'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-pytorch_model.bin", | |
'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-pytorch_model.bin", | |
'bert-base-german-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-cased-pytorch_model.bin", | |
'bert-large-uncased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-pytorch_model.bin", | |
'bert-large-cased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-pytorch_model.bin", | |
'bert-large-uncased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-pytorch_model.bin", | |
'bert-large-cased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-pytorch_model.bin", | |
'bert-base-cased-finetuned-mrpc': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-pytorch_model.bin", | |
'IDEA-CCNL/Erlangshen-ZEN2-345M-Chinese': 'https://huggingface.co/IDEA-CCNL/Erlangshen-ZEN2-345M-Chinese/resolve/main/pytorch_model.bin', | |
'IDEA-CCNL/Erlangshen-ZEN2-668M-Chinese': 'https://huggingface.co/IDEA-CCNL/Erlangshen-ZEN2-668M-Chinese/resolve/main/pytorch_model.bin', | |
} | |
PRETRAINED_CONFIG_ARCHIVE_MAP = { | |
'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-config.json", | |
'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-config.json", | |
'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-config.json", | |
'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-config.json", | |
'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-config.json", | |
'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-config.json", | |
'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-config.json", | |
'bert-base-german-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-cased-config.json", | |
'bert-large-uncased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-config.json", | |
'bert-large-cased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-config.json", | |
'bert-large-uncased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-config.json", | |
'bert-large-cased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-config.json", | |
'bert-base-cased-finetuned-mrpc': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-config.json", | |
'IDEA-CCNL/Erlangshen-ZEN2-345M-Chinese': 'https://huggingface.co/IDEA-CCNL/Erlangshen-ZEN2-345M-Chinese/resolve/main/config.json', | |
'IDEA-CCNL/Erlangshen-ZEN2-668M-Chinese': 'https://huggingface.co/IDEA-CCNL/Erlangshen-ZEN2-668M-Chinese/resolve/main/config.json', | |
} | |
BERT_CONFIG_NAME = 'bert_config.json' | |
TF_WEIGHTS_NAME = 'model.ckpt' | |
def prune_linear_layer(layer, index, dim=0): | |
""" Prune a linear layer (a model parameters) to keep only entries in index. | |
Return the pruned layer as a new layer with requires_grad=True. | |
Used to remove heads. | |
""" | |
index = index.to(layer.weight.device) | |
W = layer.weight.index_select(dim, index).clone().detach() | |
if layer.bias is not None: | |
if dim == 1: | |
b = layer.bias.clone().detach() | |
else: | |
b = layer.bias[index].clone().detach() | |
new_size = list(layer.weight.size()) | |
new_size[dim] = len(index) | |
new_layer = nn.Linear(new_size[1], new_size[0], bias=layer.bias is not None).to(layer.weight.device) | |
new_layer.weight.requires_grad = False | |
new_layer.weight.copy_(W.contiguous()) | |
new_layer.weight.requires_grad = True | |
if layer.bias is not None: | |
new_layer.bias.requires_grad = False | |
new_layer.bias.copy_(b.contiguous()) | |
new_layer.bias.requires_grad = True | |
return new_layer | |
def load_tf_weights_in_bert(model, tf_checkpoint_path): | |
""" Load tf checkpoints in a pytorch model | |
""" | |
try: | |
import re | |
import numpy as np | |
import tensorflow as tf | |
except ImportError: | |
print("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " | |
"https://www.tensorflow.org/install/ for installation instructions.") | |
raise | |
tf_path = os.path.abspath(tf_checkpoint_path) | |
print("Converting TensorFlow checkpoint from {}".format(tf_path)) | |
# Load weights from TF model | |
init_vars = tf.train.list_variables(tf_path) | |
names = [] | |
arrays = [] | |
for name, shape in init_vars: | |
print("Loading TF weight {} with shape {}".format(name, shape)) | |
array = tf.train.load_variable(tf_path, name) | |
names.append(name) | |
arrays.append(array) | |
for name, array in zip(names, arrays): | |
name = name.split('/') | |
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v | |
# which are not required for using pretrained model | |
if any(n in ["adam_v", "adam_m", "global_step"] for n in name): | |
print("Skipping {}".format("/".join(name))) | |
continue | |
pointer = model | |
for m_name in name: | |
if re.fullmatch(r'[A-Za-z]+_\d+', m_name): | |
name_lists = re.split(r'_(\d+)', m_name) | |
else: | |
name_lists = [m_name] | |
if name_lists[0] == 'kernel' or name_lists[0] == 'gamma': | |
pointer = getattr(pointer, 'weight') | |
elif name_lists[0] == 'output_bias' or name_lists[0] == 'beta': | |
pointer = getattr(pointer, 'bias') | |
elif name_lists[0] == 'output_weights': | |
pointer = getattr(pointer, 'weight') | |
elif name_lists[0] == 'squad': | |
pointer = getattr(pointer, 'classifier') | |
else: | |
try: | |
pointer = getattr(pointer, name_lists[0]) | |
except AttributeError: | |
print("Skipping {}".format("/".join(name))) | |
continue | |
if len(name_lists) >= 2: | |
num = int(name_lists[1]) | |
pointer = pointer[num] | |
if m_name[-11:] == '_embeddings': | |
pointer = getattr(pointer, 'weight') | |
elif m_name == 'kernel': | |
array = np.transpose(array) | |
try: | |
assert pointer.shape == array.shape | |
except AssertionError as e: | |
e.args += (pointer.shape, array.shape) | |
raise | |
print("Initialize PyTorch weight {}".format(name)) | |
pointer.data = torch.from_numpy(array) | |
return model | |
def gelu(x): | |
"""Implementation of the gelu activation function. | |
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): | |
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) | |
Also see https://arxiv.org/abs/1606.08415 | |
""" | |
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0))) | |
def swish(x): | |
return x * torch.sigmoid(x) | |
ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish} | |
try: | |
# from apex.normalization.fused_layer_norm import FusedLayerNorm as BertLayerNorm | |
from torch.nn import LayerNorm as BertLayerNorm | |
except ImportError: | |
logger.info("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex .") | |
class BertLayerNorm(nn.Module): | |
def __init__(self, hidden_size, eps=1e-12): | |
"""Construct a layernorm module in the TF style (epsilon inside the square root). | |
""" | |
super(BertLayerNorm, self).__init__() | |
self.weight = nn.Parameter(torch.ones(hidden_size)) | |
self.bias = nn.Parameter(torch.zeros(hidden_size)) | |
self.variance_epsilon = eps | |
def forward(self, x): | |
u = x.mean(-1, keepdim=True) | |
s = (x - u).pow(2).mean(-1, keepdim=True) | |
x = (x - u) / torch.sqrt(s + self.variance_epsilon) | |
return self.weight * x + self.bias | |
class BertEmbeddings(nn.Module): | |
"""Construct the embeddings from word, position and token_type embeddings. | |
""" | |
def __init__(self, config): | |
super(BertEmbeddings, self).__init__() | |
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0) | |
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) | |
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load | |
# any TensorFlow checkpoint file | |
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, input_ids, token_type_ids=None): | |
if token_type_ids is None: | |
token_type_ids = torch.zeros_like(input_ids) | |
words_embeddings = self.word_embeddings(input_ids) | |
token_type_embeddings = self.token_type_embeddings(token_type_ids) | |
embeddings = words_embeddings + token_type_embeddings | |
embeddings = self.LayerNorm(embeddings) | |
embeddings = self.dropout(embeddings) | |
return embeddings | |
class BertWordEmbeddings(nn.Module): | |
"""Construct the embeddings from ngram, position and token_type embeddings. | |
""" | |
def __init__(self, config): | |
super(BertWordEmbeddings, self).__init__() | |
self.word_embeddings = nn.Embedding(config.word_size, config.hidden_size, padding_idx=0) | |
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) | |
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load | |
# any TensorFlow checkpoint file | |
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, input_ids, token_type_ids=None): | |
if token_type_ids is None: | |
token_type_ids = torch.zeros_like(input_ids) | |
words_embeddings = self.word_embeddings(input_ids) | |
token_type_embeddings = self.token_type_embeddings(token_type_ids) | |
embeddings = words_embeddings + token_type_embeddings | |
embeddings = self.LayerNorm(embeddings) | |
embeddings = self.dropout(embeddings) | |
return embeddings | |
class RelativeSinusoidalPositionalEmbedding(nn.Module): | |
"""This module produces sinusoidal positional embeddings of any length. | |
Padding symbols are ignored. | |
""" | |
def __init__(self, embedding_dim, padding_idx, init_size=1568): | |
""" | |
:param embedding_dim: 每个位置的dimension | |
:param padding_idx: | |
:param init_size: | |
""" | |
super().__init__() | |
self.embedding_dim = embedding_dim | |
self.padding_idx = padding_idx | |
assert init_size % 2 == 0 | |
weights = self.get_embedding( | |
init_size+1, | |
embedding_dim, | |
padding_idx, | |
) | |
self.register_buffer('weights', weights) | |
self.register_buffer('_float_tensor', torch.FloatTensor(1)) | |
def get_embedding(self, num_embeddings, embedding_dim, padding_idx=None): | |
"""Build sinusoidal embeddings. | |
This matches the implementation in tensor2tensor, but differs slightly | |
from the description in Section 3.5 of "Attention Is All You Need". | |
""" | |
half_dim = embedding_dim // 2 | |
emb = math.log(10000) / (half_dim - 1) | |
emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb) | |
emb = torch.arange(-num_embeddings//2, num_embeddings//2, dtype=torch.float).unsqueeze(1) * emb.unsqueeze(0) | |
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1) | |
if embedding_dim % 2 == 1: | |
# zero pad | |
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1) | |
if padding_idx is not None: | |
emb[padding_idx, :] = 0 | |
self.origin_shift = num_embeddings//2 + 1 | |
return emb | |
def forward(self, input): | |
"""Input is expected to be of size [bsz x seqlen]. | |
""" | |
bsz, _, _, seq_len = input.size() | |
max_pos = self.padding_idx + seq_len | |
if max_pos > self.origin_shift: | |
# recompute/expand embeddings if needed | |
weights = self.get_embedding( | |
max_pos*2, | |
self.embedding_dim, | |
self.padding_idx, | |
) | |
weights = weights.to(self._float_tensor) | |
del self.weights | |
self.origin_shift = weights.size(0)//2 | |
self.register_buffer('weights', weights) | |
positions = torch.arange(-seq_len, seq_len).to(input.device).long() + self.origin_shift # 2*seq_len | |
embed = self.weights.index_select(0, positions.long()).detach() | |
return embed | |
class BertSelfAttention(nn.Module): | |
def __init__(self, config, output_attentions=False, keep_multihead_output=False): | |
super(BertSelfAttention, self).__init__() | |
if config.hidden_size % config.num_attention_heads != 0: | |
raise ValueError( | |
"The hidden size (%d) is not a multiple of the number of attention " | |
"heads (%d)" % (config.hidden_size, config.num_attention_heads)) | |
self.output_attentions = output_attentions | |
self.keep_multihead_output = keep_multihead_output | |
self.multihead_output = None | |
self.num_attention_heads = config.num_attention_heads | |
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) | |
self.all_head_size = self.num_attention_heads * self.attention_head_size | |
self.query = nn.Linear(config.hidden_size, self.all_head_size) | |
self.key = nn.Linear(config.hidden_size, self.all_head_size) | |
self.value = nn.Linear(config.hidden_size, self.all_head_size) | |
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) | |
self.softmax = nn.Softmax(dim=-1) | |
self.position_embedding = RelativeSinusoidalPositionalEmbedding(self.attention_head_size, 0, 1200) | |
self.r_r_bias = nn.Parameter( | |
nn.init.xavier_normal_(torch.zeros(self.num_attention_heads, self.attention_head_size))) | |
self.r_w_bias = nn.Parameter( | |
nn.init.xavier_normal_(torch.zeros(self.num_attention_heads, self.attention_head_size))) | |
def transpose_for_scores(self, x): | |
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) | |
x = x.view(*new_x_shape) | |
return x.permute(0, 2, 1, 3) | |
def forward(self, hidden_states, attention_mask, head_mask=None): | |
position_embedding = self.position_embedding(attention_mask) | |
mixed_query_layer = self.query(hidden_states) | |
mixed_key_layer = self.key(hidden_states) | |
mixed_value_layer = self.value(hidden_states) | |
query_layer = self.transpose_for_scores(mixed_query_layer) | |
key_layer = self.transpose_for_scores(mixed_key_layer) | |
value_layer = self.transpose_for_scores(mixed_value_layer) | |
rw_head_q = query_layer + self.r_r_bias[:, None] | |
AC = torch.einsum('bnqd,bnkd->bnqk', [rw_head_q.float(), key_layer.float()]) # b x n x l x d, n是head | |
D_ = torch.einsum('nd,ld->nl', self.r_w_bias.float(), position_embedding.float())[None, :, | |
None] # head x 2max_len, 每个head对位置的bias | |
B_ = torch.einsum('bnqd,ld->bnql', query_layer.float(), | |
position_embedding.float()) # bsz x head x max_len x 2max_len,每个query对每个shift的偏移 | |
BD = B_ + D_ # bsz x head x max_len x 2max_len, 要转换为bsz x head x max_len x max_len | |
BD = self._shift(BD) | |
attention_scores = AC + BD | |
attention_scores = attention_scores / math.sqrt(self.attention_head_size) | |
# Apply the attention mask is (precomputed for all layers in BertModel forward() function) | |
attention_scores = attention_scores + attention_mask | |
# Normalize the attention scores to probabilities. | |
attention_probs = self.softmax(attention_scores) | |
# This is actually dropping out entire tokens to attend to, which might | |
# seem a bit unusual, but is taken from the original Transformer paper. | |
attention_probs = self.dropout(attention_probs) | |
# Mask heads if we want to | |
if head_mask is not None: | |
attention_probs = attention_probs * head_mask | |
context_layer = torch.matmul(attention_probs.type_as(value_layer), value_layer) | |
if self.keep_multihead_output: | |
self.multihead_output = context_layer | |
self.multihead_output.retain_grad() | |
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() | |
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) | |
context_layer = context_layer.view(*new_context_layer_shape) | |
if self.output_attentions: | |
return attention_probs, context_layer | |
return context_layer | |
def _shift(self, BD): | |
""" | |
类似 | |
-3 -2 -1 0 1 2 | |
-3 -2 -1 0 1 2 | |
-3 -2 -1 0 1 2 | |
转换为 | |
0 1 2 | |
-1 0 1 | |
-2 -1 0 | |
:param BD: batch_size x n_head x max_len x 2max_len | |
:return: batch_size x n_head x max_len x max_len | |
""" | |
bsz, n_head, max_len, _ = BD.size() | |
zero_pad = BD.new_zeros(bsz, n_head, max_len, 1) | |
BD = torch.cat([BD, zero_pad], dim=-1).view(bsz, n_head, -1, max_len) # bsz x n_head x (2max_len+1) x max_len | |
BD = BD[:, :, :-1].view(bsz, n_head, max_len, -1) # bsz x n_head x 2max_len x max_len | |
BD = BD[:, :, :, max_len:] | |
return BD | |
class BertSelfOutput(nn.Module): | |
def __init__(self, config): | |
super(BertSelfOutput, self).__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states, input_tensor): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states + input_tensor) | |
return hidden_states | |
class BertAttention(nn.Module): | |
def __init__(self, config, output_attentions=False, keep_multihead_output=False): | |
super(BertAttention, self).__init__() | |
self.output_attentions = output_attentions | |
self.self = BertSelfAttention(config, output_attentions=output_attentions, | |
keep_multihead_output=keep_multihead_output) | |
self.output = BertSelfOutput(config) | |
def prune_heads(self, heads): | |
if len(heads) == 0: | |
return | |
mask = torch.ones(self.self.num_attention_heads, self.self.attention_head_size) | |
for head in heads: | |
mask[head] = 0 | |
mask = mask.view(-1).contiguous().eq(1) | |
index = torch.arange(len(mask))[mask].long() | |
# Prune linear layers | |
self.self.query = prune_linear_layer(self.self.query, index) | |
self.self.key = prune_linear_layer(self.self.key, index) | |
self.self.value = prune_linear_layer(self.self.value, index) | |
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) | |
# Update hyper params | |
self.self.num_attention_heads = self.self.num_attention_heads - len(heads) | |
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads | |
def forward(self, input_tensor, attention_mask, head_mask=None): | |
self_output = self.self(input_tensor, attention_mask, head_mask) | |
if self.output_attentions: | |
attentions, self_output = self_output | |
attention_output = self.output(self_output, input_tensor) | |
if self.output_attentions: | |
return attentions, attention_output | |
return attention_output | |
class BertIntermediate(nn.Module): | |
def __init__(self, config): | |
super(BertIntermediate, self).__init__() | |
self.dense = nn.Linear(config.hidden_size, config.intermediate_size) | |
# if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)): | |
if isinstance(config.hidden_act, str): | |
self.intermediate_act_fn = ACT2FN[config.hidden_act] | |
else: | |
self.intermediate_act_fn = config.hidden_act | |
def forward(self, hidden_states): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.intermediate_act_fn(hidden_states) | |
return hidden_states | |
class BertOutput(nn.Module): | |
def __init__(self, config): | |
super(BertOutput, self).__init__() | |
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) | |
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states, input_tensor): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states + input_tensor) | |
return hidden_states | |
class BertLayer(nn.Module): | |
def __init__(self, config, output_attentions=False, keep_multihead_output=False): | |
super(BertLayer, self).__init__() | |
self.output_attentions = output_attentions | |
self.attention = BertAttention(config, output_attentions=output_attentions, | |
keep_multihead_output=keep_multihead_output) | |
self.intermediate = BertIntermediate(config) | |
self.output = BertOutput(config) | |
def forward(self, hidden_states, attention_mask, head_mask=None): | |
attention_output = self.attention(hidden_states, attention_mask, head_mask) | |
if self.output_attentions: | |
attentions, attention_output = attention_output | |
intermediate_output = self.intermediate(attention_output) | |
layer_output = self.output(intermediate_output, attention_output) | |
if self.output_attentions: | |
return attentions, layer_output | |
return layer_output | |
class ZenEncoder(nn.Module): | |
def __init__(self, config, output_attentions=False, keep_multihead_output=False): | |
super(ZenEncoder, self).__init__() | |
self.output_attentions = output_attentions | |
layer = BertLayer(config, output_attentions=output_attentions, | |
keep_multihead_output=keep_multihead_output) | |
self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_hidden_layers)]) | |
self.word_layers = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_hidden_word_layers)]) | |
self.num_hidden_word_layers = config.num_hidden_word_layers | |
def forward(self, hidden_states, ngram_hidden_states, ngram_position_matrix, attention_mask, | |
ngram_attention_mask, | |
output_all_encoded_layers=True, head_mask=None): | |
# Need to check what is the attention masking doing here | |
all_encoder_layers = [] | |
all_attentions = [] | |
num_hidden_ngram_layers = self.num_hidden_word_layers | |
for i, layer_module in enumerate(self.layer): | |
hidden_states = layer_module(hidden_states, attention_mask, head_mask[i]) | |
if i < num_hidden_ngram_layers: | |
ngram_hidden_states = self.word_layers[i](ngram_hidden_states, ngram_attention_mask, head_mask[i]) | |
if self.output_attentions: | |
ngram_attentions, ngram_hidden_states = ngram_hidden_states | |
all_attentions.append(ngram_attentions) | |
if self.output_attentions: | |
attentions, hidden_states = hidden_states | |
all_attentions.append(attentions) | |
hidden_states += torch.bmm(ngram_position_matrix.float(), ngram_hidden_states.float()) | |
if output_all_encoded_layers: | |
all_encoder_layers.append(hidden_states) | |
if not output_all_encoded_layers: | |
all_encoder_layers.append(hidden_states) | |
if self.output_attentions: | |
return all_attentions, all_encoder_layers | |
return all_encoder_layers | |
class BertPooler(nn.Module): | |
def __init__(self, config): | |
super(BertPooler, self).__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.activation = nn.Tanh() | |
def forward(self, hidden_states): | |
# We "pool" the model by simply taking the hidden state corresponding | |
# to the first token. | |
first_token_tensor = hidden_states[:, 0] | |
pooled_output = self.dense(first_token_tensor) | |
pooled_output = self.activation(pooled_output) | |
return pooled_output | |
class BertPredictionHeadTransform(nn.Module): | |
def __init__(self, config): | |
super(BertPredictionHeadTransform, self).__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
# if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)): | |
if isinstance(config.hidden_act, str): | |
self.transform_act_fn = ACT2FN[config.hidden_act] | |
else: | |
self.transform_act_fn = config.hidden_act | |
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
def forward(self, hidden_states): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.transform_act_fn(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states) | |
return hidden_states | |
class BertLMPredictionHead(nn.Module): | |
def __init__(self, config, bert_model_embedding_weights): | |
super(BertLMPredictionHead, self).__init__() | |
self.transform = BertPredictionHeadTransform(config) | |
# The output weights are the same as the input embeddings, but there is | |
# an output-only bias for each token. | |
self.decoder = nn.Linear(bert_model_embedding_weights.size(1), | |
bert_model_embedding_weights.size(0), | |
bias=False) | |
self.decoder.weight = bert_model_embedding_weights | |
self.bias = nn.Parameter(torch.zeros(bert_model_embedding_weights.size(0))) | |
def forward(self, hidden_states): | |
hidden_states = self.transform(hidden_states) | |
hidden_states = self.decoder(hidden_states) + self.bias | |
return hidden_states | |
class ZenOnlyMLMHead(nn.Module): | |
def __init__(self, config, bert_model_embedding_weights): | |
super(ZenOnlyMLMHead, self).__init__() | |
self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights) | |
def forward(self, sequence_output): | |
prediction_scores = self.predictions(sequence_output) | |
return prediction_scores | |
class ZenOnlyNSPHead(nn.Module): | |
def __init__(self, config): | |
super(ZenOnlyNSPHead, self).__init__() | |
self.seq_relationship = nn.Linear(config.hidden_size, 2) | |
def forward(self, pooled_output): | |
seq_relationship_score = self.seq_relationship(pooled_output) | |
return seq_relationship_score | |
class ZenPreTrainingHeads(nn.Module): | |
def __init__(self, config, bert_model_embedding_weights): | |
super(ZenPreTrainingHeads, self).__init__() | |
self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights) | |
self.seq_relationship = nn.Linear(config.hidden_size, 2) | |
def forward(self, sequence_output, pooled_output): | |
prediction_scores = self.predictions(sequence_output) | |
seq_relationship_score = self.seq_relationship(pooled_output) | |
return prediction_scores, seq_relationship_score | |
class ZenPreTrainedModel(PreTrainedModel): | |
""" An abstract class to handle weights initialization and | |
a simple interface for dowloading and loading pretrained models. | |
""" | |
config_class = ZenConfig | |
supports_gradient_checkpointing = True | |
_keys_to_ignore_on_load_missing = [r"position_ids"] | |
def _init_weights(self, module): | |
"""Initialize the weights""" | |
if isinstance(module, nn.Linear): | |
# Slightly different from the TF version which uses truncated_normal for initialization | |
# cf https://github.com/pytorch/pytorch/pull/5617 | |
module.weight.data.normal_( | |
mean=0.0, std=self.config.initializer_range) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_( | |
mean=0.0, std=self.config.initializer_range) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
class ZenModel(ZenPreTrainedModel): | |
"""ZEN model ("BERT-based Chinese (Z) text encoder Enhanced by N-gram representations"). | |
Params: | |
`config`: a BertConfig class instance with the configuration to build a new model | |
`output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False | |
`keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient. | |
This can be used to compute head importance metrics. Default: False | |
Inputs: | |
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] | |
with the word token indices in the vocabulary | |
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token | |
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to | |
a `sentence B` token (see BERT paper for more details). | |
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices | |
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max | |
input sequence length in the current batch. It's the mask that we typically use for attention when | |
a batch has varying length sentences. | |
`output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`. | |
`head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1. | |
It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked. | |
`input_ngram_ids`: input_ids of ngrams. | |
`ngram_token_type_ids`: token_type_ids of ngrams. | |
`ngram_attention_mask`: attention_mask of ngrams. | |
`ngram_position_matrix`: position matrix of ngrams. | |
Outputs: Tuple of (encoded_layers, pooled_output) | |
`encoded_layers`: controled by `output_all_encoded_layers` argument: | |
- `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end | |
of each attention block (i.e. 12 full sequences for BERT-base, 24 for BERT-large), each | |
encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size], | |
- `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding | |
to the last attention block of shape [batch_size, sequence_length, hidden_size], | |
`pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a | |
classifier pretrained on top of the hidden state associated to the first character of the | |
input (`CLS`) to train on the Next-Sentence task (see BERT's paper). | |
""" | |
def __init__(self, config, output_attentions=False, keep_multihead_output=False): | |
super(ZenModel, self).__init__(config) | |
self.output_attentions = output_attentions | |
self.embeddings = BertEmbeddings(config) | |
self.word_embeddings = BertWordEmbeddings(config) | |
self.encoder = ZenEncoder(config, output_attentions=output_attentions, | |
keep_multihead_output=keep_multihead_output) | |
self.pooler = BertPooler(config) | |
self.init_weights() | |
def prune_heads(self, heads_to_prune): | |
""" Prunes heads of the model. | |
heads_to_prune: dict of {layer_num: list of heads to prune in this layer} | |
""" | |
for layer, heads in heads_to_prune.items(): | |
self.encoder.layer[layer].attention.prune_heads(heads) | |
def get_multihead_outputs(self): | |
""" Gather all multi-head outputs. | |
Return: list (layers) of multihead module outputs with gradients | |
""" | |
return [layer.attention.self.multihead_output for layer in self.encoder.layer] | |
def forward(self, input_ids, | |
input_ngram_ids, | |
ngram_position_matrix, | |
token_type_ids=None, | |
ngram_token_type_ids=None, | |
attention_mask=None, | |
ngram_attention_mask=None, | |
output_all_encoded_layers=True, | |
head_mask=None): | |
if attention_mask is None: | |
attention_mask = torch.ones_like(input_ids) | |
if token_type_ids is None: | |
token_type_ids = torch.zeros_like(input_ids) | |
if ngram_attention_mask is None: | |
ngram_attention_mask = torch.ones_like(input_ngram_ids) | |
if ngram_token_type_ids is None: | |
ngram_token_type_ids = torch.zeros_like(input_ngram_ids) | |
# We create a 3D attention mask from a 2D tensor mask. | |
# Sizes are [batch_size, 1, 1, to_seq_length] | |
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] | |
# this attention mask is more simple than the triangular masking of causal attention | |
# used in OpenAI GPT, we just need to prepare the broadcast dimension here. | |
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) | |
extended_ngram_attention_mask = ngram_attention_mask.unsqueeze(1).unsqueeze(2) | |
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for | |
# masked positions, this operation will create a tensor which is 0.0 for | |
# positions we want to attend and -10000.0 for masked positions. | |
# Since we are adding it to the raw scores before the softmax, this is | |
# effectively the same as removing these entirely. | |
extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility | |
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 | |
extended_ngram_attention_mask = extended_ngram_attention_mask.to(dtype=next(self.parameters()).dtype) | |
extended_ngram_attention_mask = (1.0 - extended_ngram_attention_mask) * -10000.0 | |
# Prepare head mask if needed | |
# 1.0 in head_mask indicate we keep the head | |
# attention_probs has shape bsz x n_heads x N x N | |
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] | |
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] | |
if head_mask is not None: | |
if head_mask.dim() == 1: | |
head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) | |
head_mask = head_mask.expand_as(self.config.num_hidden_layers, -1, -1, -1, -1) | |
elif head_mask.dim() == 2: | |
head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze( | |
-1) # We can specify head_mask for each layer | |
head_mask = head_mask.to( | |
dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility | |
else: | |
head_mask = [None] * self.config.num_hidden_layers | |
embedding_output = self.embeddings(input_ids, token_type_ids) | |
ngram_embedding_output = self.word_embeddings(input_ngram_ids, ngram_token_type_ids) | |
encoded_layers = self.encoder(embedding_output, | |
ngram_embedding_output, | |
ngram_position_matrix, | |
extended_attention_mask, | |
extended_ngram_attention_mask, | |
output_all_encoded_layers=output_all_encoded_layers, | |
head_mask=head_mask) | |
if self.output_attentions: | |
all_attentions, encoded_layers = encoded_layers | |
sequence_output = encoded_layers[-1] | |
pooled_output = self.pooler(sequence_output) | |
if not output_all_encoded_layers: | |
encoded_layers = encoded_layers[-1] | |
if self.output_attentions: | |
return all_attentions, encoded_layers, pooled_output | |
return encoded_layers, pooled_output | |
class ZenForPreTraining(ZenPreTrainedModel): | |
"""ZEN model with pre-training heads. | |
This module comprises the ZEN model followed by the two pre-training heads: | |
- the masked language modeling head, and | |
- the next sentence classification head. | |
Params: | |
`config`: a BertConfig class instance with the configuration to build a new model | |
`output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False | |
`keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient. | |
This can be used to compute head importance metrics. Default: False | |
Inputs: | |
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] | |
with the word token indices in the vocabulary | |
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token | |
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to | |
a `sentence B` token (see BERT paper for more details). | |
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices | |
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max | |
input sequence length in the current batch. It's the mask that we typically use for attention when | |
a batch has varying length sentences. | |
`masked_lm_labels`: optional masked language modeling labels: torch.LongTensor of shape [batch_size, sequence_length] | |
with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss | |
is only computed for the labels set in [0, ..., vocab_size] | |
`next_sentence_label`: optional next sentence classification loss: torch.LongTensor of shape [batch_size] | |
with indices selected in [0, 1]. | |
0 => next sentence is the continuation, 1 => next sentence is a random sentence. | |
`head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1. | |
It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked. | |
`input_ngram_ids`: input_ids of ngrams. | |
`ngram_token_type_ids`: token_type_ids of ngrams. | |
`ngram_attention_mask`: attention_mask of ngrams. | |
`ngram_position_matrix`: position matrix of ngrams. | |
Outputs: | |
if `masked_lm_labels` and `next_sentence_label` are not `None`: | |
Outputs the total_loss which is the sum of the masked language modeling loss and the next | |
sentence classification loss. | |
if `masked_lm_labels` or `next_sentence_label` is `None`: | |
Outputs a tuple comprising | |
- the masked language modeling logits of shape [batch_size, sequence_length, vocab_size], and | |
- the next sentence classification logits of shape [batch_size, 2]. | |
""" | |
def __init__(self, config, output_attentions=False, keep_multihead_output=False): | |
super(ZenForPreTraining, self).__init__(config) | |
self.output_attentions = output_attentions | |
self.bert = ZenModel(config, output_attentions=output_attentions, | |
keep_multihead_output=keep_multihead_output) | |
self.cls = ZenPreTrainingHeads(config, self.bert.embeddings.word_embeddings.weight) | |
self.init_weights() | |
def forward(self, input_ids, input_ngram_ids, ngram_position_matrix, token_type_ids=None, | |
ngram_token_type_ids=None, | |
attention_mask=None, | |
ngram_attention_mask=None, | |
masked_lm_labels=None, | |
next_sentence_label=None, head_mask=None): | |
outputs = self.bert(input_ids, | |
input_ngram_ids, | |
ngram_position_matrix, | |
token_type_ids, | |
ngram_token_type_ids, | |
attention_mask, | |
ngram_attention_mask, | |
output_all_encoded_layers=False, head_mask=head_mask) | |
if self.output_attentions: | |
all_attentions, sequence_output, pooled_output = outputs | |
else: | |
sequence_output, pooled_output = outputs | |
prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) | |
if masked_lm_labels is not None and next_sentence_label is not None: | |
loss_fct = CrossEntropyLoss(ignore_index=-1) | |
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1)) | |
next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) | |
total_loss = masked_lm_loss + next_sentence_loss | |
return total_loss | |
elif self.output_attentions: | |
return all_attentions, prediction_scores, seq_relationship_score | |
return prediction_scores, seq_relationship_score | |
class ZenForMaskedLM(ZenPreTrainedModel): | |
"""ZEN model with the masked language modeling head. | |
This module comprises the ZEN model followed by the masked language modeling head. | |
Params: | |
`config`: a BertConfig class instance with the configuration to build a new model | |
`output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False | |
`keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient. | |
This can be used to compute head importance metrics. Default: False | |
Inputs: | |
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] | |
with the word token indices in the vocabulary | |
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token | |
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to | |
a `sentence B` token (see BERT paper for more details). | |
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices | |
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max | |
input sequence length in the current batch. It's the mask that we typically use for attention when | |
a batch has varying length sentences. | |
`masked_lm_labels`: masked language modeling labels: torch.LongTensor of shape [batch_size, sequence_length] | |
with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss | |
is only computed for the labels set in [0, ..., vocab_size] | |
`head_mask`: an optional torch.LongTensor of shape [num_heads] with indices | |
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max | |
input sequence length in the current batch. It's the mask that we typically use for attention when | |
a batch has varying length sentences. | |
`head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1. | |
It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked. | |
`input_ngram_ids`: input_ids of ngrams. | |
`ngram_token_type_ids`: token_type_ids of ngrams. | |
`ngram_attention_mask`: attention_mask of ngrams. | |
`ngram_position_matrix`: position matrix of ngrams. | |
Outputs: | |
if `masked_lm_labels` is not `None`: | |
Outputs the masked language modeling loss. | |
if `masked_lm_labels` is `None`: | |
Outputs the masked language modeling logits of shape [batch_size, sequence_length, vocab_size]. | |
""" | |
def __init__(self, config, output_attentions=False, keep_multihead_output=False): | |
super(ZenForMaskedLM, self).__init__(config) | |
self.output_attentions = output_attentions | |
self.bert = ZenModel(config, output_attentions=output_attentions, | |
keep_multihead_output=keep_multihead_output) | |
self.cls = ZenOnlyMLMHead(config, self.bert.embeddings.word_embeddings.weight) | |
self.init_weights() | |
def forward(self, input_ids, input_ngram_ids, ngram_position_matrix, token_type_ids=None, attention_mask=None, masked_lm_labels=None, head_mask=None): | |
outputs = self.bert(input_ids, input_ngram_ids, ngram_position_matrix, token_type_ids, attention_mask, | |
output_all_encoded_layers=False, | |
head_mask=head_mask) | |
if self.output_attentions: | |
all_attentions, sequence_output, _ = outputs | |
else: | |
sequence_output, _ = outputs | |
prediction_scores = self.cls(sequence_output) | |
if masked_lm_labels is not None: | |
loss_fct = CrossEntropyLoss(ignore_index=-1) | |
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1)) | |
return masked_lm_loss | |
elif self.output_attentions: | |
return all_attentions, prediction_scores | |
return prediction_scores | |
class ZenForNextSentencePrediction(ZenPreTrainedModel): | |
"""ZEN model with next sentence prediction head. | |
This module comprises the ZEN model followed by the next sentence classification head. | |
Params: | |
`config`: a BertConfig class instance with the configuration to build a new model | |
`output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False | |
`keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient. | |
This can be used to compute head importance metrics. Default: False | |
Inputs: | |
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] | |
with the word token indices in the vocabulary | |
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token | |
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to | |
a `sentence B` token (see BERT paper for more details). | |
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices | |
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max | |
input sequence length in the current batch. It's the mask that we typically use for attention when | |
a batch has varying length sentences. | |
`next_sentence_label`: next sentence classification loss: torch.LongTensor of shape [batch_size] | |
with indices selected in [0, 1]. | |
0 => next sentence is the continuation, 1 => next sentence is a random sentence. | |
`head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1. | |
It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked. | |
`input_ngram_ids`: input_ids of ngrams. | |
`ngram_token_type_ids`: token_type_ids of ngrams. | |
`ngram_attention_mask`: attention_mask of ngrams. | |
`ngram_position_matrix`: position matrix of ngrams. | |
Outputs: | |
if `next_sentence_label` is not `None`: | |
Outputs the total_loss which is the sum of the masked language modeling loss and the next | |
sentence classification loss. | |
if `next_sentence_label` is `None`: | |
Outputs the next sentence classification logits of shape [batch_size, 2]. | |
""" | |
def __init__(self, config, output_attentions=False, keep_multihead_output=False): | |
super(ZenForNextSentencePrediction, self).__init__(config) | |
self.output_attentions = output_attentions | |
self.bert = ZenModel(config, output_attentions=output_attentions, | |
keep_multihead_output=keep_multihead_output) | |
self.cls = ZenOnlyNSPHead(config) | |
self.init_weights() | |
def forward(self, input_ids, input_ngram_ids, ngram_position_matrix, token_type_ids=None, attention_mask=None, next_sentence_label=None, head_mask=None): | |
outputs = self.bert(input_ids, input_ngram_ids, ngram_position_matrix, token_type_ids, attention_mask, | |
output_all_encoded_layers=False, | |
head_mask=head_mask) | |
if self.output_attentions: | |
all_attentions, _, pooled_output = outputs | |
else: | |
_, pooled_output = outputs | |
seq_relationship_score = self.cls(pooled_output) | |
if next_sentence_label is not None: | |
loss_fct = CrossEntropyLoss(ignore_index=-1) | |
next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) | |
return next_sentence_loss | |
elif self.output_attentions: | |
return all_attentions, seq_relationship_score | |
return seq_relationship_score | |
class ZenForSequenceClassification(ZenPreTrainedModel): | |
"""ZEN model for classification. | |
This module is composed of the ZEN model with a linear layer on top of | |
the pooled output. | |
Params: | |
`config`: a BertConfig class instance with the configuration to build a new model | |
`output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False | |
`keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient. | |
This can be used to compute head importance metrics. Default: False | |
`num_labels`: the number of classes for the classifier. Default = 2. | |
Inputs: | |
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] | |
with the word token indices in the vocabulary. Items in the batch should begin with the special "CLS" token. (see the tokens preprocessing logic in the scripts | |
`extract_features.py`, `run_classifier.py` and `run_squad.py`) | |
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token | |
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to | |
a `sentence B` token (see BERT paper for more details). | |
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices | |
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max | |
input sequence length in the current batch. It's the mask that we typically use for attention when | |
a batch has varying length sentences. | |
`labels`: labels for the classification output: torch.LongTensor of shape [batch_size] | |
with indices selected in [0, ..., num_labels]. | |
`head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1. | |
It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked. | |
`input_ngram_ids`: input_ids of ngrams. | |
`ngram_token_type_ids`: token_type_ids of ngrams. | |
`ngram_attention_mask`: attention_mask of ngrams. | |
`ngram_position_matrix`: position matrix of ngrams. | |
Outputs: | |
if `labels` is not `None`: | |
Outputs the CrossEntropy classification loss of the output with the labels. | |
if `labels` is `None`: | |
Outputs the classification logits of shape [batch_size, num_labels]. | |
""" | |
def __init__(self, config, num_labels=2, output_attentions=False, keep_multihead_output=False): | |
super(ZenForSequenceClassification, self).__init__(config) | |
self.output_attentions = output_attentions | |
self.num_labels = config.num_labels | |
self.bert = ZenModel(config, output_attentions=output_attentions, | |
keep_multihead_output=keep_multihead_output) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
self.classifier = nn.Linear(config.hidden_size, self.num_labels) | |
self.init_weights() | |
def forward(self, input_ids, input_ngram_ids, ngram_position_matrix, token_type_ids=None, attention_mask=None, labels=None, head_mask=None): | |
outputs = self.bert(input_ids, input_ngram_ids, ngram_position_matrix, token_type_ids, | |
attention_mask=attention_mask, | |
output_all_encoded_layers=False, | |
head_mask=head_mask) | |
if self.output_attentions: | |
all_attentions, _, pooled_output = outputs | |
else: | |
_, pooled_output = outputs | |
pooled_output = self.dropout(pooled_output) | |
logits = self.classifier(pooled_output) | |
loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
return loss, logits | |
elif self.output_attentions: | |
return all_attentions, logits | |
return loss, logits | |
class TokenClassifierOutput: | |
""" | |
Base class for outputs of token classification models. | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
logits: torch.FloatTensor = None | |
class ZenForTokenClassification(ZenPreTrainedModel): | |
"""ZEN model for token-level classification. | |
This module is composed of the ZEN model with a linear layer on top of | |
the full hidden state of the last layer. | |
Params: | |
`config`: a BertConfig class instance with the configuration to build a new model | |
`output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False | |
`keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient. | |
This can be used to compute head importance metrics. Default: False | |
`num_labels`: the number of classes for the classifier. Default = 2. | |
Inputs: | |
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] | |
with the word token indices in the vocabulary | |
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token | |
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to | |
a `sentence B` token (see BERT paper for more details). | |
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices | |
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max | |
input sequence length in the current batch. It's the mask that we typically use for attention when | |
a batch has varying length sentences. | |
`labels`: labels for the classification output: torch.LongTensor of shape [batch_size, sequence_length] | |
with indices selected in [0, ..., num_labels]. | |
`head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1. | |
It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked. | |
`input_ngram_ids`: input_ids of ngrams. | |
`ngram_token_type_ids`: token_type_ids of ngrams. | |
`ngram_attention_mask`: attention_mask of ngrams. | |
`ngram_position_matrix`: position matrix of ngrams. | |
Outputs: | |
if `labels` is not `None`: | |
Outputs the CrossEntropy classification loss of the output with the labels. | |
if `labels` is `None`: | |
Outputs the classification logits of shape [batch_size, sequence_length, num_labels]. | |
""" | |
def __init__(self, config, num_labels=2, output_attentions=False, keep_multihead_output=False): | |
super(ZenForTokenClassification, self).__init__(config) | |
self.output_attentions = output_attentions | |
self.num_labels = config.num_labels | |
self.bert = ZenModel(config, output_attentions=output_attentions, | |
keep_multihead_output=keep_multihead_output) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
self.classifier = nn.Linear(config.hidden_size, self.num_labels) | |
self.init_weights() | |
def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, valid_ids=None, | |
input_ngram_ids=None, ngram_position_matrix=None, head_mask=None, b_use_valid_filter=False): | |
outputs = self.bert(input_ids, input_ngram_ids, ngram_position_matrix, token_type_ids, | |
attention_mask=attention_mask, output_all_encoded_layers=False, head_mask=head_mask) | |
if self.output_attentions: | |
all_attentions, sequence_output, _ = outputs | |
else: | |
sequence_output, _ = outputs | |
# if b_use_valid_filter: | |
# batch_size, max_len, feat_dim = sequence_output.shape | |
# valid_output = torch.zeros(batch_size, max_len, feat_dim, dtype=sequence_output.dtype, | |
# device=input_ids.device) | |
# for i in range(batch_size): | |
# temp = sequence_output[i][valid_ids[i] == 1] | |
# valid_output[i][:temp.size(0)] = temp | |
# else: | |
# valid_output = sequence_output | |
valid_output = sequence_output | |
sequence_output = self.dropout(valid_output) | |
logits = self.classifier(sequence_output) | |
loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss(ignore_index=0) | |
# Only keep active parts of the loss | |
# attention_mask_label = None | |
# if attention_mask_label is not None: | |
if attention_mask is not None: | |
# active_loss = attention_mask_label.view(-1) == 1 | |
active_loss = attention_mask.view(-1) == 1 | |
active_logits = logits.view(-1, self.num_labels)[active_loss] | |
active_labels = labels.view(-1)[active_loss] | |
loss = loss_fct(active_logits, active_labels) | |
else: | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
return TokenClassifierOutput(loss, logits) | |
else: | |
return TokenClassifierOutput(loss, logits) | |
class ZenForQuestionAnswering(ZenPreTrainedModel): | |
"""BERT model for Question Answering (span extraction). | |
This module is composed of the BERT model with a linear layer on top of | |
the sequence output that computes start_logits and end_logits | |
Params: | |
`config`: a BertConfig class instance with the configuration to build a new model | |
`output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False | |
`keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient. | |
This can be used to compute head importance metrics. Default: False | |
Inputs: | |
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] | |
with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts | |
`extract_features.py`, `run_classifier.py` and `run_squad.py`) | |
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token | |
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to | |
a `sentence B` token (see BERT paper for more details). | |
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices | |
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max | |
input sequence length in the current batch. It's the mask that we typically use for attention when | |
a batch has varying length sentences. | |
`start_positions`: position of the first token for the labeled span: torch.LongTensor of shape [batch_size]. | |
Positions are clamped to the length of the sequence and position outside of the sequence are not taken | |
into account for computing the loss. | |
`end_positions`: position of the last token for the labeled span: torch.LongTensor of shape [batch_size]. | |
Positions are clamped to the length of the sequence and position outside of the sequence are not taken | |
into account for computing the loss. | |
`head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1. | |
It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked. | |
Outputs: | |
if `start_positions` and `end_positions` are not `None`: | |
Outputs the total_loss which is the sum of the CrossEntropy loss for the start and end token positions. | |
if `start_positions` or `end_positions` is `None`: | |
Outputs a tuple of start_logits, end_logits which are the logits respectively for the start and end | |
position tokens of shape [batch_size, sequence_length]. | |
Example usage: | |
```python | |
# Already been converted into WordPiece token ids | |
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]]) | |
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]]) | |
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]]) | |
config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768, | |
num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072) | |
model = BertForQuestionAnswering(config) | |
start_logits, end_logits = model(input_ids, token_type_ids, input_mask) | |
``` | |
""" | |
def __init__(self, config, output_attentions=False, keep_multihead_output=False): | |
super(ZenForQuestionAnswering, self).__init__(config) | |
self.output_attentions = output_attentions | |
self.bert = ZenModel(config, output_attentions=output_attentions, | |
keep_multihead_output=keep_multihead_output) | |
self.qa_outputs = nn.Linear(config.hidden_size, 2) | |
self.init_weights() | |
def forward(self, input_ids, input_ngram_ids, ngram_position_matrix, token_type_ids=None, attention_mask=None, start_positions=None, | |
end_positions=None, head_mask=None): | |
outputs = self.bert(input_ids, input_ngram_ids, ngram_position_matrix, token_type_ids, | |
attention_mask=attention_mask, | |
output_all_encoded_layers=False, | |
head_mask=head_mask) | |
if self.output_attentions: | |
all_attentions, sequence_output, _ = outputs | |
else: | |
sequence_output, _ = outputs | |
logits = self.qa_outputs(sequence_output) | |
start_logits, end_logits = logits.split(1, dim=-1) | |
start_logits = start_logits.squeeze(-1) | |
end_logits = end_logits.squeeze(-1) | |
if start_positions is not None and end_positions is not None: | |
# If we are on multi-GPU, split add a dimension | |
if len(start_positions.size()) > 1: | |
start_positions = start_positions.squeeze(-1) | |
if len(end_positions.size()) > 1: | |
end_positions = end_positions.squeeze(-1) | |
# sometimes the start/end positions are outside our model inputs, we ignore these terms | |
ignored_index = start_logits.size(1) | |
start_positions.clamp_(0, ignored_index) | |
end_positions.clamp_(0, ignored_index) | |
loss_fct = CrossEntropyLoss(ignore_index=ignored_index) | |
start_loss = loss_fct(start_logits, start_positions) | |
end_loss = loss_fct(end_logits, end_positions) | |
total_loss = (start_loss + end_loss) / 2 | |
return total_loss | |
elif self.output_attentions: | |
return all_attentions, start_logits, end_logits | |
return start_logits, end_logits | |