Spaces:
Runtime error
Runtime error
File size: 68,750 Bytes
50f0fbb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 |
# coding: utf-8
# Copyright 2019 Sinovation Ventures AI Institute
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This file is partially derived from the code at
# https://github.com/huggingface/transformers/tree/master/transformers
#
# Original copyright notice:
#
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch ZEN2 model classes."""
from __future__ import absolute_import, division, print_function, unicode_literals
import copy
import logging
import math
import os
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from dataclasses import dataclass
from typing import Optional
from transformers import PreTrainedModel
from fengshen.models.zen2.configuration_zen2 import ZenConfig
logger = logging.getLogger(__name__)
PRETRAINED_MODEL_ARCHIVE_MAP = {
'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-pytorch_model.bin",
'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-pytorch_model.bin",
'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-pytorch_model.bin",
'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-pytorch_model.bin",
'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-pytorch_model.bin",
'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-pytorch_model.bin",
'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-pytorch_model.bin",
'bert-base-german-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-cased-pytorch_model.bin",
'bert-large-uncased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-pytorch_model.bin",
'bert-large-cased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-pytorch_model.bin",
'bert-large-uncased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-pytorch_model.bin",
'bert-large-cased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-pytorch_model.bin",
'bert-base-cased-finetuned-mrpc': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-pytorch_model.bin",
'IDEA-CCNL/Erlangshen-ZEN2-345M-Chinese': 'https://huggingface.co/IDEA-CCNL/Erlangshen-ZEN2-345M-Chinese/resolve/main/pytorch_model.bin',
'IDEA-CCNL/Erlangshen-ZEN2-668M-Chinese': 'https://huggingface.co/IDEA-CCNL/Erlangshen-ZEN2-668M-Chinese/resolve/main/pytorch_model.bin',
}
PRETRAINED_CONFIG_ARCHIVE_MAP = {
'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-config.json",
'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-config.json",
'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-config.json",
'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-config.json",
'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-config.json",
'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-config.json",
'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-config.json",
'bert-base-german-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-cased-config.json",
'bert-large-uncased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-config.json",
'bert-large-cased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-config.json",
'bert-large-uncased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-config.json",
'bert-large-cased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-config.json",
'bert-base-cased-finetuned-mrpc': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-config.json",
'IDEA-CCNL/Erlangshen-ZEN2-345M-Chinese': 'https://huggingface.co/IDEA-CCNL/Erlangshen-ZEN2-345M-Chinese/resolve/main/config.json',
'IDEA-CCNL/Erlangshen-ZEN2-668M-Chinese': 'https://huggingface.co/IDEA-CCNL/Erlangshen-ZEN2-668M-Chinese/resolve/main/config.json',
}
BERT_CONFIG_NAME = 'bert_config.json'
TF_WEIGHTS_NAME = 'model.ckpt'
def prune_linear_layer(layer, index, dim=0):
""" Prune a linear layer (a model parameters) to keep only entries in index.
Return the pruned layer as a new layer with requires_grad=True.
Used to remove heads.
"""
index = index.to(layer.weight.device)
W = layer.weight.index_select(dim, index).clone().detach()
if layer.bias is not None:
if dim == 1:
b = layer.bias.clone().detach()
else:
b = layer.bias[index].clone().detach()
new_size = list(layer.weight.size())
new_size[dim] = len(index)
new_layer = nn.Linear(new_size[1], new_size[0], bias=layer.bias is not None).to(layer.weight.device)
new_layer.weight.requires_grad = False
new_layer.weight.copy_(W.contiguous())
new_layer.weight.requires_grad = True
if layer.bias is not None:
new_layer.bias.requires_grad = False
new_layer.bias.copy_(b.contiguous())
new_layer.bias.requires_grad = True
return new_layer
def load_tf_weights_in_bert(model, tf_checkpoint_path):
""" Load tf checkpoints in a pytorch model
"""
try:
import re
import numpy as np
import tensorflow as tf
except ImportError:
print("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions.")
raise
tf_path = os.path.abspath(tf_checkpoint_path)
print("Converting TensorFlow checkpoint from {}".format(tf_path))
# Load weights from TF model
init_vars = tf.train.list_variables(tf_path)
names = []
arrays = []
for name, shape in init_vars:
print("Loading TF weight {} with shape {}".format(name, shape))
array = tf.train.load_variable(tf_path, name)
names.append(name)
arrays.append(array)
for name, array in zip(names, arrays):
name = name.split('/')
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
# which are not required for using pretrained model
if any(n in ["adam_v", "adam_m", "global_step"] for n in name):
print("Skipping {}".format("/".join(name)))
continue
pointer = model
for m_name in name:
if re.fullmatch(r'[A-Za-z]+_\d+', m_name):
name_lists = re.split(r'_(\d+)', m_name)
else:
name_lists = [m_name]
if name_lists[0] == 'kernel' or name_lists[0] == 'gamma':
pointer = getattr(pointer, 'weight')
elif name_lists[0] == 'output_bias' or name_lists[0] == 'beta':
pointer = getattr(pointer, 'bias')
elif name_lists[0] == 'output_weights':
pointer = getattr(pointer, 'weight')
elif name_lists[0] == 'squad':
pointer = getattr(pointer, 'classifier')
else:
try:
pointer = getattr(pointer, name_lists[0])
except AttributeError:
print("Skipping {}".format("/".join(name)))
continue
if len(name_lists) >= 2:
num = int(name_lists[1])
pointer = pointer[num]
if m_name[-11:] == '_embeddings':
pointer = getattr(pointer, 'weight')
elif m_name == 'kernel':
array = np.transpose(array)
try:
assert pointer.shape == array.shape
except AssertionError as e:
e.args += (pointer.shape, array.shape)
raise
print("Initialize PyTorch weight {}".format(name))
pointer.data = torch.from_numpy(array)
return model
def gelu(x):
"""Implementation of the gelu activation function.
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
Also see https://arxiv.org/abs/1606.08415
"""
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
def swish(x):
return x * torch.sigmoid(x)
ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish}
try:
# from apex.normalization.fused_layer_norm import FusedLayerNorm as BertLayerNorm
from torch.nn import LayerNorm as BertLayerNorm
except ImportError:
logger.info("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex .")
class BertLayerNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-12):
"""Construct a layernorm module in the TF style (epsilon inside the square root).
"""
super(BertLayerNorm, self).__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.bias = nn.Parameter(torch.zeros(hidden_size))
self.variance_epsilon = eps
def forward(self, x):
u = x.mean(-1, keepdim=True)
s = (x - u).pow(2).mean(-1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.variance_epsilon)
return self.weight * x + self.bias
class BertEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings.
"""
def __init__(self, config):
super(BertEmbeddings, self).__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, input_ids, token_type_ids=None):
if token_type_ids is None:
token_type_ids = torch.zeros_like(input_ids)
words_embeddings = self.word_embeddings(input_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = words_embeddings + token_type_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class BertWordEmbeddings(nn.Module):
"""Construct the embeddings from ngram, position and token_type embeddings.
"""
def __init__(self, config):
super(BertWordEmbeddings, self).__init__()
self.word_embeddings = nn.Embedding(config.word_size, config.hidden_size, padding_idx=0)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, input_ids, token_type_ids=None):
if token_type_ids is None:
token_type_ids = torch.zeros_like(input_ids)
words_embeddings = self.word_embeddings(input_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = words_embeddings + token_type_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class RelativeSinusoidalPositionalEmbedding(nn.Module):
"""This module produces sinusoidal positional embeddings of any length.
Padding symbols are ignored.
"""
def __init__(self, embedding_dim, padding_idx, init_size=1568):
"""
:param embedding_dim: 每个位置的dimension
:param padding_idx:
:param init_size:
"""
super().__init__()
self.embedding_dim = embedding_dim
self.padding_idx = padding_idx
assert init_size % 2 == 0
weights = self.get_embedding(
init_size+1,
embedding_dim,
padding_idx,
)
self.register_buffer('weights', weights)
self.register_buffer('_float_tensor', torch.FloatTensor(1))
def get_embedding(self, num_embeddings, embedding_dim, padding_idx=None):
"""Build sinusoidal embeddings.
This matches the implementation in tensor2tensor, but differs slightly
from the description in Section 3.5 of "Attention Is All You Need".
"""
half_dim = embedding_dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb)
emb = torch.arange(-num_embeddings//2, num_embeddings//2, dtype=torch.float).unsqueeze(1) * emb.unsqueeze(0)
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1)
if embedding_dim % 2 == 1:
# zero pad
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
if padding_idx is not None:
emb[padding_idx, :] = 0
self.origin_shift = num_embeddings//2 + 1
return emb
def forward(self, input):
"""Input is expected to be of size [bsz x seqlen].
"""
bsz, _, _, seq_len = input.size()
max_pos = self.padding_idx + seq_len
if max_pos > self.origin_shift:
# recompute/expand embeddings if needed
weights = self.get_embedding(
max_pos*2,
self.embedding_dim,
self.padding_idx,
)
weights = weights.to(self._float_tensor)
del self.weights
self.origin_shift = weights.size(0)//2
self.register_buffer('weights', weights)
positions = torch.arange(-seq_len, seq_len).to(input.device).long() + self.origin_shift # 2*seq_len
embed = self.weights.index_select(0, positions.long()).detach()
return embed
class BertSelfAttention(nn.Module):
def __init__(self, config, output_attentions=False, keep_multihead_output=False):
super(BertSelfAttention, self).__init__()
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
"The hidden size (%d) is not a multiple of the number of attention "
"heads (%d)" % (config.hidden_size, config.num_attention_heads))
self.output_attentions = output_attentions
self.keep_multihead_output = keep_multihead_output
self.multihead_output = None
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.softmax = nn.Softmax(dim=-1)
self.position_embedding = RelativeSinusoidalPositionalEmbedding(self.attention_head_size, 0, 1200)
self.r_r_bias = nn.Parameter(
nn.init.xavier_normal_(torch.zeros(self.num_attention_heads, self.attention_head_size)))
self.r_w_bias = nn.Parameter(
nn.init.xavier_normal_(torch.zeros(self.num_attention_heads, self.attention_head_size)))
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, hidden_states, attention_mask, head_mask=None):
position_embedding = self.position_embedding(attention_mask)
mixed_query_layer = self.query(hidden_states)
mixed_key_layer = self.key(hidden_states)
mixed_value_layer = self.value(hidden_states)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
rw_head_q = query_layer + self.r_r_bias[:, None]
AC = torch.einsum('bnqd,bnkd->bnqk', [rw_head_q.float(), key_layer.float()]) # b x n x l x d, n是head
D_ = torch.einsum('nd,ld->nl', self.r_w_bias.float(), position_embedding.float())[None, :,
None] # head x 2max_len, 每个head对位置的bias
B_ = torch.einsum('bnqd,ld->bnql', query_layer.float(),
position_embedding.float()) # bsz x head x max_len x 2max_len,每个query对每个shift的偏移
BD = B_ + D_ # bsz x head x max_len x 2max_len, 要转换为bsz x head x max_len x max_len
BD = self._shift(BD)
attention_scores = AC + BD
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = self.softmax(attention_scores)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs.type_as(value_layer), value_layer)
if self.keep_multihead_output:
self.multihead_output = context_layer
self.multihead_output.retain_grad()
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
if self.output_attentions:
return attention_probs, context_layer
return context_layer
def _shift(self, BD):
"""
类似
-3 -2 -1 0 1 2
-3 -2 -1 0 1 2
-3 -2 -1 0 1 2
转换为
0 1 2
-1 0 1
-2 -1 0
:param BD: batch_size x n_head x max_len x 2max_len
:return: batch_size x n_head x max_len x max_len
"""
bsz, n_head, max_len, _ = BD.size()
zero_pad = BD.new_zeros(bsz, n_head, max_len, 1)
BD = torch.cat([BD, zero_pad], dim=-1).view(bsz, n_head, -1, max_len) # bsz x n_head x (2max_len+1) x max_len
BD = BD[:, :, :-1].view(bsz, n_head, max_len, -1) # bsz x n_head x 2max_len x max_len
BD = BD[:, :, :, max_len:]
return BD
class BertSelfOutput(nn.Module):
def __init__(self, config):
super(BertSelfOutput, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class BertAttention(nn.Module):
def __init__(self, config, output_attentions=False, keep_multihead_output=False):
super(BertAttention, self).__init__()
self.output_attentions = output_attentions
self.self = BertSelfAttention(config, output_attentions=output_attentions,
keep_multihead_output=keep_multihead_output)
self.output = BertSelfOutput(config)
def prune_heads(self, heads):
if len(heads) == 0:
return
mask = torch.ones(self.self.num_attention_heads, self.self.attention_head_size)
for head in heads:
mask[head] = 0
mask = mask.view(-1).contiguous().eq(1)
index = torch.arange(len(mask))[mask].long()
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
def forward(self, input_tensor, attention_mask, head_mask=None):
self_output = self.self(input_tensor, attention_mask, head_mask)
if self.output_attentions:
attentions, self_output = self_output
attention_output = self.output(self_output, input_tensor)
if self.output_attentions:
return attentions, attention_output
return attention_output
class BertIntermediate(nn.Module):
def __init__(self, config):
super(BertIntermediate, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
# if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class BertOutput(nn.Module):
def __init__(self, config):
super(BertOutput, self).__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class BertLayer(nn.Module):
def __init__(self, config, output_attentions=False, keep_multihead_output=False):
super(BertLayer, self).__init__()
self.output_attentions = output_attentions
self.attention = BertAttention(config, output_attentions=output_attentions,
keep_multihead_output=keep_multihead_output)
self.intermediate = BertIntermediate(config)
self.output = BertOutput(config)
def forward(self, hidden_states, attention_mask, head_mask=None):
attention_output = self.attention(hidden_states, attention_mask, head_mask)
if self.output_attentions:
attentions, attention_output = attention_output
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
if self.output_attentions:
return attentions, layer_output
return layer_output
class ZenEncoder(nn.Module):
def __init__(self, config, output_attentions=False, keep_multihead_output=False):
super(ZenEncoder, self).__init__()
self.output_attentions = output_attentions
layer = BertLayer(config, output_attentions=output_attentions,
keep_multihead_output=keep_multihead_output)
self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_hidden_layers)])
self.word_layers = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_hidden_word_layers)])
self.num_hidden_word_layers = config.num_hidden_word_layers
def forward(self, hidden_states, ngram_hidden_states, ngram_position_matrix, attention_mask,
ngram_attention_mask,
output_all_encoded_layers=True, head_mask=None):
# Need to check what is the attention masking doing here
all_encoder_layers = []
all_attentions = []
num_hidden_ngram_layers = self.num_hidden_word_layers
for i, layer_module in enumerate(self.layer):
hidden_states = layer_module(hidden_states, attention_mask, head_mask[i])
if i < num_hidden_ngram_layers:
ngram_hidden_states = self.word_layers[i](ngram_hidden_states, ngram_attention_mask, head_mask[i])
if self.output_attentions:
ngram_attentions, ngram_hidden_states = ngram_hidden_states
all_attentions.append(ngram_attentions)
if self.output_attentions:
attentions, hidden_states = hidden_states
all_attentions.append(attentions)
hidden_states += torch.bmm(ngram_position_matrix.float(), ngram_hidden_states.float())
if output_all_encoded_layers:
all_encoder_layers.append(hidden_states)
if not output_all_encoded_layers:
all_encoder_layers.append(hidden_states)
if self.output_attentions:
return all_attentions, all_encoder_layers
return all_encoder_layers
class BertPooler(nn.Module):
def __init__(self, config):
super(BertPooler, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class BertPredictionHeadTransform(nn.Module):
def __init__(self, config):
super(BertPredictionHeadTransform, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
# if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
if isinstance(config.hidden_act, str):
self.transform_act_fn = ACT2FN[config.hidden_act]
else:
self.transform_act_fn = config.hidden_act
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
class BertLMPredictionHead(nn.Module):
def __init__(self, config, bert_model_embedding_weights):
super(BertLMPredictionHead, self).__init__()
self.transform = BertPredictionHeadTransform(config)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(bert_model_embedding_weights.size(1),
bert_model_embedding_weights.size(0),
bias=False)
self.decoder.weight = bert_model_embedding_weights
self.bias = nn.Parameter(torch.zeros(bert_model_embedding_weights.size(0)))
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states) + self.bias
return hidden_states
class ZenOnlyMLMHead(nn.Module):
def __init__(self, config, bert_model_embedding_weights):
super(ZenOnlyMLMHead, self).__init__()
self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights)
def forward(self, sequence_output):
prediction_scores = self.predictions(sequence_output)
return prediction_scores
class ZenOnlyNSPHead(nn.Module):
def __init__(self, config):
super(ZenOnlyNSPHead, self).__init__()
self.seq_relationship = nn.Linear(config.hidden_size, 2)
def forward(self, pooled_output):
seq_relationship_score = self.seq_relationship(pooled_output)
return seq_relationship_score
class ZenPreTrainingHeads(nn.Module):
def __init__(self, config, bert_model_embedding_weights):
super(ZenPreTrainingHeads, self).__init__()
self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights)
self.seq_relationship = nn.Linear(config.hidden_size, 2)
def forward(self, sequence_output, pooled_output):
prediction_scores = self.predictions(sequence_output)
seq_relationship_score = self.seq_relationship(pooled_output)
return prediction_scores, seq_relationship_score
class ZenPreTrainedModel(PreTrainedModel):
""" An abstract class to handle weights initialization and
a simple interface for dowloading and loading pretrained models.
"""
config_class = ZenConfig
supports_gradient_checkpointing = True
_keys_to_ignore_on_load_missing = [r"position_ids"]
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(
mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(
mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
class ZenModel(ZenPreTrainedModel):
"""ZEN model ("BERT-based Chinese (Z) text encoder Enhanced by N-gram representations").
Params:
`config`: a BertConfig class instance with the configuration to build a new model
`output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
`keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
This can be used to compute head importance metrics. Default: False
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
with the word token indices in the vocabulary
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
a `sentence B` token (see BERT paper for more details).
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
input sequence length in the current batch. It's the mask that we typically use for attention when
a batch has varying length sentences.
`output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`.
`head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
`input_ngram_ids`: input_ids of ngrams.
`ngram_token_type_ids`: token_type_ids of ngrams.
`ngram_attention_mask`: attention_mask of ngrams.
`ngram_position_matrix`: position matrix of ngrams.
Outputs: Tuple of (encoded_layers, pooled_output)
`encoded_layers`: controled by `output_all_encoded_layers` argument:
- `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end
of each attention block (i.e. 12 full sequences for BERT-base, 24 for BERT-large), each
encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size],
- `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding
to the last attention block of shape [batch_size, sequence_length, hidden_size],
`pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a
classifier pretrained on top of the hidden state associated to the first character of the
input (`CLS`) to train on the Next-Sentence task (see BERT's paper).
"""
def __init__(self, config, output_attentions=False, keep_multihead_output=False):
super(ZenModel, self).__init__(config)
self.output_attentions = output_attentions
self.embeddings = BertEmbeddings(config)
self.word_embeddings = BertWordEmbeddings(config)
self.encoder = ZenEncoder(config, output_attentions=output_attentions,
keep_multihead_output=keep_multihead_output)
self.pooler = BertPooler(config)
self.init_weights()
def prune_heads(self, heads_to_prune):
""" Prunes heads of the model.
heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
def get_multihead_outputs(self):
""" Gather all multi-head outputs.
Return: list (layers) of multihead module outputs with gradients
"""
return [layer.attention.self.multihead_output for layer in self.encoder.layer]
def forward(self, input_ids,
input_ngram_ids,
ngram_position_matrix,
token_type_ids=None,
ngram_token_type_ids=None,
attention_mask=None,
ngram_attention_mask=None,
output_all_encoded_layers=True,
head_mask=None):
if attention_mask is None:
attention_mask = torch.ones_like(input_ids)
if token_type_ids is None:
token_type_ids = torch.zeros_like(input_ids)
if ngram_attention_mask is None:
ngram_attention_mask = torch.ones_like(input_ngram_ids)
if ngram_token_type_ids is None:
ngram_token_type_ids = torch.zeros_like(input_ngram_ids)
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
extended_ngram_attention_mask = ngram_attention_mask.unsqueeze(1).unsqueeze(2)
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
extended_ngram_attention_mask = extended_ngram_attention_mask.to(dtype=next(self.parameters()).dtype)
extended_ngram_attention_mask = (1.0 - extended_ngram_attention_mask) * -10000.0
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
if head_mask is not None:
if head_mask.dim() == 1:
head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
head_mask = head_mask.expand_as(self.config.num_hidden_layers, -1, -1, -1, -1)
elif head_mask.dim() == 2:
head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(
-1) # We can specify head_mask for each layer
head_mask = head_mask.to(
dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
else:
head_mask = [None] * self.config.num_hidden_layers
embedding_output = self.embeddings(input_ids, token_type_ids)
ngram_embedding_output = self.word_embeddings(input_ngram_ids, ngram_token_type_ids)
encoded_layers = self.encoder(embedding_output,
ngram_embedding_output,
ngram_position_matrix,
extended_attention_mask,
extended_ngram_attention_mask,
output_all_encoded_layers=output_all_encoded_layers,
head_mask=head_mask)
if self.output_attentions:
all_attentions, encoded_layers = encoded_layers
sequence_output = encoded_layers[-1]
pooled_output = self.pooler(sequence_output)
if not output_all_encoded_layers:
encoded_layers = encoded_layers[-1]
if self.output_attentions:
return all_attentions, encoded_layers, pooled_output
return encoded_layers, pooled_output
class ZenForPreTraining(ZenPreTrainedModel):
"""ZEN model with pre-training heads.
This module comprises the ZEN model followed by the two pre-training heads:
- the masked language modeling head, and
- the next sentence classification head.
Params:
`config`: a BertConfig class instance with the configuration to build a new model
`output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
`keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
This can be used to compute head importance metrics. Default: False
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
with the word token indices in the vocabulary
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
a `sentence B` token (see BERT paper for more details).
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
input sequence length in the current batch. It's the mask that we typically use for attention when
a batch has varying length sentences.
`masked_lm_labels`: optional masked language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
is only computed for the labels set in [0, ..., vocab_size]
`next_sentence_label`: optional next sentence classification loss: torch.LongTensor of shape [batch_size]
with indices selected in [0, 1].
0 => next sentence is the continuation, 1 => next sentence is a random sentence.
`head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
`input_ngram_ids`: input_ids of ngrams.
`ngram_token_type_ids`: token_type_ids of ngrams.
`ngram_attention_mask`: attention_mask of ngrams.
`ngram_position_matrix`: position matrix of ngrams.
Outputs:
if `masked_lm_labels` and `next_sentence_label` are not `None`:
Outputs the total_loss which is the sum of the masked language modeling loss and the next
sentence classification loss.
if `masked_lm_labels` or `next_sentence_label` is `None`:
Outputs a tuple comprising
- the masked language modeling logits of shape [batch_size, sequence_length, vocab_size], and
- the next sentence classification logits of shape [batch_size, 2].
"""
def __init__(self, config, output_attentions=False, keep_multihead_output=False):
super(ZenForPreTraining, self).__init__(config)
self.output_attentions = output_attentions
self.bert = ZenModel(config, output_attentions=output_attentions,
keep_multihead_output=keep_multihead_output)
self.cls = ZenPreTrainingHeads(config, self.bert.embeddings.word_embeddings.weight)
self.init_weights()
def forward(self, input_ids, input_ngram_ids, ngram_position_matrix, token_type_ids=None,
ngram_token_type_ids=None,
attention_mask=None,
ngram_attention_mask=None,
masked_lm_labels=None,
next_sentence_label=None, head_mask=None):
outputs = self.bert(input_ids,
input_ngram_ids,
ngram_position_matrix,
token_type_ids,
ngram_token_type_ids,
attention_mask,
ngram_attention_mask,
output_all_encoded_layers=False, head_mask=head_mask)
if self.output_attentions:
all_attentions, sequence_output, pooled_output = outputs
else:
sequence_output, pooled_output = outputs
prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)
if masked_lm_labels is not None and next_sentence_label is not None:
loss_fct = CrossEntropyLoss(ignore_index=-1)
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
total_loss = masked_lm_loss + next_sentence_loss
return total_loss
elif self.output_attentions:
return all_attentions, prediction_scores, seq_relationship_score
return prediction_scores, seq_relationship_score
class ZenForMaskedLM(ZenPreTrainedModel):
"""ZEN model with the masked language modeling head.
This module comprises the ZEN model followed by the masked language modeling head.
Params:
`config`: a BertConfig class instance with the configuration to build a new model
`output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
`keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
This can be used to compute head importance metrics. Default: False
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
with the word token indices in the vocabulary
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
a `sentence B` token (see BERT paper for more details).
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
input sequence length in the current batch. It's the mask that we typically use for attention when
a batch has varying length sentences.
`masked_lm_labels`: masked language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
is only computed for the labels set in [0, ..., vocab_size]
`head_mask`: an optional torch.LongTensor of shape [num_heads] with indices
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
input sequence length in the current batch. It's the mask that we typically use for attention when
a batch has varying length sentences.
`head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
`input_ngram_ids`: input_ids of ngrams.
`ngram_token_type_ids`: token_type_ids of ngrams.
`ngram_attention_mask`: attention_mask of ngrams.
`ngram_position_matrix`: position matrix of ngrams.
Outputs:
if `masked_lm_labels` is not `None`:
Outputs the masked language modeling loss.
if `masked_lm_labels` is `None`:
Outputs the masked language modeling logits of shape [batch_size, sequence_length, vocab_size].
"""
def __init__(self, config, output_attentions=False, keep_multihead_output=False):
super(ZenForMaskedLM, self).__init__(config)
self.output_attentions = output_attentions
self.bert = ZenModel(config, output_attentions=output_attentions,
keep_multihead_output=keep_multihead_output)
self.cls = ZenOnlyMLMHead(config, self.bert.embeddings.word_embeddings.weight)
self.init_weights()
def forward(self, input_ids, input_ngram_ids, ngram_position_matrix, token_type_ids=None, attention_mask=None, masked_lm_labels=None, head_mask=None):
outputs = self.bert(input_ids, input_ngram_ids, ngram_position_matrix, token_type_ids, attention_mask,
output_all_encoded_layers=False,
head_mask=head_mask)
if self.output_attentions:
all_attentions, sequence_output, _ = outputs
else:
sequence_output, _ = outputs
prediction_scores = self.cls(sequence_output)
if masked_lm_labels is not None:
loss_fct = CrossEntropyLoss(ignore_index=-1)
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
return masked_lm_loss
elif self.output_attentions:
return all_attentions, prediction_scores
return prediction_scores
class ZenForNextSentencePrediction(ZenPreTrainedModel):
"""ZEN model with next sentence prediction head.
This module comprises the ZEN model followed by the next sentence classification head.
Params:
`config`: a BertConfig class instance with the configuration to build a new model
`output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
`keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
This can be used to compute head importance metrics. Default: False
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
with the word token indices in the vocabulary
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
a `sentence B` token (see BERT paper for more details).
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
input sequence length in the current batch. It's the mask that we typically use for attention when
a batch has varying length sentences.
`next_sentence_label`: next sentence classification loss: torch.LongTensor of shape [batch_size]
with indices selected in [0, 1].
0 => next sentence is the continuation, 1 => next sentence is a random sentence.
`head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
`input_ngram_ids`: input_ids of ngrams.
`ngram_token_type_ids`: token_type_ids of ngrams.
`ngram_attention_mask`: attention_mask of ngrams.
`ngram_position_matrix`: position matrix of ngrams.
Outputs:
if `next_sentence_label` is not `None`:
Outputs the total_loss which is the sum of the masked language modeling loss and the next
sentence classification loss.
if `next_sentence_label` is `None`:
Outputs the next sentence classification logits of shape [batch_size, 2].
"""
def __init__(self, config, output_attentions=False, keep_multihead_output=False):
super(ZenForNextSentencePrediction, self).__init__(config)
self.output_attentions = output_attentions
self.bert = ZenModel(config, output_attentions=output_attentions,
keep_multihead_output=keep_multihead_output)
self.cls = ZenOnlyNSPHead(config)
self.init_weights()
def forward(self, input_ids, input_ngram_ids, ngram_position_matrix, token_type_ids=None, attention_mask=None, next_sentence_label=None, head_mask=None):
outputs = self.bert(input_ids, input_ngram_ids, ngram_position_matrix, token_type_ids, attention_mask,
output_all_encoded_layers=False,
head_mask=head_mask)
if self.output_attentions:
all_attentions, _, pooled_output = outputs
else:
_, pooled_output = outputs
seq_relationship_score = self.cls(pooled_output)
if next_sentence_label is not None:
loss_fct = CrossEntropyLoss(ignore_index=-1)
next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
return next_sentence_loss
elif self.output_attentions:
return all_attentions, seq_relationship_score
return seq_relationship_score
class ZenForSequenceClassification(ZenPreTrainedModel):
"""ZEN model for classification.
This module is composed of the ZEN model with a linear layer on top of
the pooled output.
Params:
`config`: a BertConfig class instance with the configuration to build a new model
`output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
`keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
This can be used to compute head importance metrics. Default: False
`num_labels`: the number of classes for the classifier. Default = 2.
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
with the word token indices in the vocabulary. Items in the batch should begin with the special "CLS" token. (see the tokens preprocessing logic in the scripts
`extract_features.py`, `run_classifier.py` and `run_squad.py`)
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
a `sentence B` token (see BERT paper for more details).
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
input sequence length in the current batch. It's the mask that we typically use for attention when
a batch has varying length sentences.
`labels`: labels for the classification output: torch.LongTensor of shape [batch_size]
with indices selected in [0, ..., num_labels].
`head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
`input_ngram_ids`: input_ids of ngrams.
`ngram_token_type_ids`: token_type_ids of ngrams.
`ngram_attention_mask`: attention_mask of ngrams.
`ngram_position_matrix`: position matrix of ngrams.
Outputs:
if `labels` is not `None`:
Outputs the CrossEntropy classification loss of the output with the labels.
if `labels` is `None`:
Outputs the classification logits of shape [batch_size, num_labels].
"""
def __init__(self, config, num_labels=2, output_attentions=False, keep_multihead_output=False):
super(ZenForSequenceClassification, self).__init__(config)
self.output_attentions = output_attentions
self.num_labels = config.num_labels
self.bert = ZenModel(config, output_attentions=output_attentions,
keep_multihead_output=keep_multihead_output)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, self.num_labels)
self.init_weights()
def forward(self, input_ids, input_ngram_ids, ngram_position_matrix, token_type_ids=None, attention_mask=None, labels=None, head_mask=None):
outputs = self.bert(input_ids, input_ngram_ids, ngram_position_matrix, token_type_ids,
attention_mask=attention_mask,
output_all_encoded_layers=False,
head_mask=head_mask)
if self.output_attentions:
all_attentions, _, pooled_output = outputs
else:
_, pooled_output = outputs
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
return loss, logits
elif self.output_attentions:
return all_attentions, logits
return loss, logits
@dataclass
class TokenClassifierOutput:
"""
Base class for outputs of token classification models.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
class ZenForTokenClassification(ZenPreTrainedModel):
"""ZEN model for token-level classification.
This module is composed of the ZEN model with a linear layer on top of
the full hidden state of the last layer.
Params:
`config`: a BertConfig class instance with the configuration to build a new model
`output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
`keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
This can be used to compute head importance metrics. Default: False
`num_labels`: the number of classes for the classifier. Default = 2.
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
with the word token indices in the vocabulary
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
a `sentence B` token (see BERT paper for more details).
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
input sequence length in the current batch. It's the mask that we typically use for attention when
a batch has varying length sentences.
`labels`: labels for the classification output: torch.LongTensor of shape [batch_size, sequence_length]
with indices selected in [0, ..., num_labels].
`head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
`input_ngram_ids`: input_ids of ngrams.
`ngram_token_type_ids`: token_type_ids of ngrams.
`ngram_attention_mask`: attention_mask of ngrams.
`ngram_position_matrix`: position matrix of ngrams.
Outputs:
if `labels` is not `None`:
Outputs the CrossEntropy classification loss of the output with the labels.
if `labels` is `None`:
Outputs the classification logits of shape [batch_size, sequence_length, num_labels].
"""
def __init__(self, config, num_labels=2, output_attentions=False, keep_multihead_output=False):
super(ZenForTokenClassification, self).__init__(config)
self.output_attentions = output_attentions
self.num_labels = config.num_labels
self.bert = ZenModel(config, output_attentions=output_attentions,
keep_multihead_output=keep_multihead_output)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, self.num_labels)
self.init_weights()
def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, valid_ids=None,
input_ngram_ids=None, ngram_position_matrix=None, head_mask=None, b_use_valid_filter=False):
outputs = self.bert(input_ids, input_ngram_ids, ngram_position_matrix, token_type_ids,
attention_mask=attention_mask, output_all_encoded_layers=False, head_mask=head_mask)
if self.output_attentions:
all_attentions, sequence_output, _ = outputs
else:
sequence_output, _ = outputs
# if b_use_valid_filter:
# batch_size, max_len, feat_dim = sequence_output.shape
# valid_output = torch.zeros(batch_size, max_len, feat_dim, dtype=sequence_output.dtype,
# device=input_ids.device)
# for i in range(batch_size):
# temp = sequence_output[i][valid_ids[i] == 1]
# valid_output[i][:temp.size(0)] = temp
# else:
# valid_output = sequence_output
valid_output = sequence_output
sequence_output = self.dropout(valid_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss(ignore_index=0)
# Only keep active parts of the loss
# attention_mask_label = None
# if attention_mask_label is not None:
if attention_mask is not None:
# active_loss = attention_mask_label.view(-1) == 1
active_loss = attention_mask.view(-1) == 1
active_logits = logits.view(-1, self.num_labels)[active_loss]
active_labels = labels.view(-1)[active_loss]
loss = loss_fct(active_logits, active_labels)
else:
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
return TokenClassifierOutput(loss, logits)
else:
return TokenClassifierOutput(loss, logits)
class ZenForQuestionAnswering(ZenPreTrainedModel):
"""BERT model for Question Answering (span extraction).
This module is composed of the BERT model with a linear layer on top of
the sequence output that computes start_logits and end_logits
Params:
`config`: a BertConfig class instance with the configuration to build a new model
`output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
`keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
This can be used to compute head importance metrics. Default: False
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
`extract_features.py`, `run_classifier.py` and `run_squad.py`)
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
a `sentence B` token (see BERT paper for more details).
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
input sequence length in the current batch. It's the mask that we typically use for attention when
a batch has varying length sentences.
`start_positions`: position of the first token for the labeled span: torch.LongTensor of shape [batch_size].
Positions are clamped to the length of the sequence and position outside of the sequence are not taken
into account for computing the loss.
`end_positions`: position of the last token for the labeled span: torch.LongTensor of shape [batch_size].
Positions are clamped to the length of the sequence and position outside of the sequence are not taken
into account for computing the loss.
`head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
Outputs:
if `start_positions` and `end_positions` are not `None`:
Outputs the total_loss which is the sum of the CrossEntropy loss for the start and end token positions.
if `start_positions` or `end_positions` is `None`:
Outputs a tuple of start_logits, end_logits which are the logits respectively for the start and end
position tokens of shape [batch_size, sequence_length].
Example usage:
```python
# Already been converted into WordPiece token ids
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
model = BertForQuestionAnswering(config)
start_logits, end_logits = model(input_ids, token_type_ids, input_mask)
```
"""
def __init__(self, config, output_attentions=False, keep_multihead_output=False):
super(ZenForQuestionAnswering, self).__init__(config)
self.output_attentions = output_attentions
self.bert = ZenModel(config, output_attentions=output_attentions,
keep_multihead_output=keep_multihead_output)
self.qa_outputs = nn.Linear(config.hidden_size, 2)
self.init_weights()
def forward(self, input_ids, input_ngram_ids, ngram_position_matrix, token_type_ids=None, attention_mask=None, start_positions=None,
end_positions=None, head_mask=None):
outputs = self.bert(input_ids, input_ngram_ids, ngram_position_matrix, token_type_ids,
attention_mask=attention_mask,
output_all_encoded_layers=False,
head_mask=head_mask)
if self.output_attentions:
all_attentions, sequence_output, _ = outputs
else:
sequence_output, _ = outputs
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1)
end_logits = end_logits.squeeze(-1)
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions.clamp_(0, ignored_index)
end_positions.clamp_(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
return total_loss
elif self.output_attentions:
return all_attentions, start_logits, end_logits
return start_logits, end_logits
|