HaloMaster's picture
add fengshen
50f0fbb
raw
history blame
17.8 kB
import warnings
from pytorch_lightning import LightningModule
from fengshen.models import transformer_utils
import torch
import torch.utils.checkpoint
from torch import nn
import torch.nn.functional as F
from dataclasses import dataclass
from typing import Optional, Tuple
from transformers.file_utils import *
from transformers.modeling_outputs import *
from transformers.models.bart import *
from transformers.models.bart.modeling_bart import BartClassificationHead
_CONFIG_FOR_DOC = "BartConfig"
# ------------------------ ZZ: CBart addition ------------------------
def _reorder_buffer(attn_cache, new_order):
for k, input_buffer_k in attn_cache.items():
if input_buffer_k is not None:
attn_cache[k] = input_buffer_k.index_select(0, new_order)
return attn_cache
def _make_linear_from_emb(emb):
vocab_size, emb_size = emb.weight.shape
lin_layer = nn.Linear(vocab_size, emb_size, bias=False)
lin_layer.weight.data = emb.weight.data
return lin_layer
BART_GENERATION_EXAMPLE = r"""
Summarization example::
>>> from transformers import BartTokenizer, BartForConditionalGeneration, BartConfig
>>> model = BartForConditionalGeneration.from_pretrained('facebook/bart-large-cnn')
>>> tokenizer = BartTokenizer.from_pretrained('facebook/bart-large-cnn')
>>> ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors='pt')
>>> # Generate Summary
>>> summary_ids = model.generate(inputs['input_ids'], num_beams=4, max_length=5, early_stopping=True)
>>> print([tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in summary_ids])
Mask filling example::
>>> from transformers import BartTokenizer, BartForConditionalGeneration
>>> tokenizer = BartTokenizer.from_pretrained('facebook/bart-large')
>>> TXT = "My friends are <mask> but they eat too many carbs."
>>> model = BartForConditionalGeneration.from_pretrained('facebook/bart-large')
>>> input_ids = tokenizer([TXT], return_tensors='pt')['input_ids']
>>> logits = model(input_ids).logits
>>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item()
>>> probs = logits[0, masked_index].softmax(dim=0)
>>> values, predictions = probs.topk(5)
>>> tokenizer.decode(predictions).split()
"""
@dataclass
class CBartLMOutput(ModelOutput):
"""
Base class for CBart specific language models outputs.
Args:
....
"""
loss: Optional[torch.FloatTensor] = None
encoder_loss: Optional[torch.FloatTensor] = None
decoder_loss: Optional[torch.FloatTensor] = None
encoder_logits: torch.FloatTensor = None
logits: torch.FloatTensor = None
past_key_values: Optional[Tuple[torch.FloatTensor]] = None
decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
encoder_last_hidden_state: Optional[torch.FloatTensor] = None
encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
class BartForTextInfill(BartPretrainedModel):
"""
this class is designed for text infilling.
During training, the encoder is used to predict replace, insert,
and the decoder is used to generate original input.
Compared with BartForConditionalGeneration class,
we add a module over the encoder and add a new loss for the encoder.
"""
base_model_prefix = "model"
authorized_missing_keys = [r"final_logits_bias",
r"encoder\.version", r"decoder\.version"]
def __init__(self, config: BartConfig):
super().__init__(config)
base_model = BartModel(config)
self.model = base_model
self.register_buffer("final_logits_bias", torch.zeros(
(1, self.model.shared.num_embeddings)))
# print( config.encoder_loss_type, config.num_labels)
# add a new attribute into BartConfig class (revise BartConfig)
self.encoder_loss_type = config.encoder_loss_type
self.num_labels = config.num_labels
if self.encoder_loss_type == 0: # 0 is classification loss, 1 is regression loss
# add a classification module for the encoder
self.classification_head = BartClassificationHead(
config.d_model, config.d_model, config.num_labels, config.classif_dropout,
)
else:
# add a regression module for the encoder
self.classification_head = BartClassificationHead(
config.d_model, config.d_model, 1, config.classif_dropout,
)
self.model._init_weights(self.classification_head.dense)
self.model._init_weights(self.classification_head.out_proj)
self.loss_weight = config.loss_weight
self.register_buffer("label_weights", torch.zeros((self.num_labels)))
def resize_token_embeddings(self, new_num_tokens: int) -> nn.Embedding:
old_num_tokens = self.model.shared.num_embeddings
new_embeddings = super().resize_token_embeddings(new_num_tokens)
self.model.shared = new_embeddings
self._resize_final_logits_bias(new_num_tokens, old_num_tokens)
return new_embeddings
def _resize_final_logits_bias(self, new_num_tokens: int, old_num_tokens: int) -> None:
if new_num_tokens <= old_num_tokens:
new_bias = self.final_logits_bias[:, :new_num_tokens]
else:
extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens),
device=self.final_logits_bias.device)
new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1)
self.register_buffer("final_logits_bias", new_bias)
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
@add_end_docstrings(BART_GENERATION_EXAMPLE)
def forward(
self,
input_ids,
attention_mask=None,
encoder_outputs=None,
decoder_input_ids=None,
decoder_attention_mask=None,
past_key_values=None,
encoder_labels=None,
labels=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=True,
**unused,
):
r"""
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
Labels for computing the masked language modeling loss.
Indices should either be in ``[0, ..., config.vocab_size]`` or -100 (see ``input_ids`` docstring).
Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens
with labels in ``[0, ..., config.vocab_size]``.
Returns:
Conditional generation example::
# Mask filling only works for bart-large
from transformers import BartTokenizer, BartForConditionalGeneration
tokenizer = BartTokenizer.from_pretrained('facebook/bart-large')
TXT = "My friends are <mask> but they eat too many carbs."
model = BartForConditionalGeneration.from_pretrained('facebook/bart-large')
input_ids = tokenizer([TXT], return_tensors='pt')['input_ids']
logits = model(input_ids).logits
masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item()
probs = logits[0, masked_index].softmax(dim=0)
values, predictions = probs.topk(5)
tokenizer.decode(predictions).split()
# ['good', 'great', 'all', 'really', 'very']
"""
if "lm_labels" in unused:
warnings.warn(
"The `lm_labels` argument is deprecated and will be removed in a future version, use `labels` instead.",
FutureWarning,
)
labels = unused.pop("lm_labels")
if "decoder_cached_states" in unused:
warnings.warn(
"The `decoder_cached_states` argument is deprecated and will be removed in a future version, use `decoder_past_key_values` instead.",
FutureWarning,
)
decoder_past_key_values = unused.pop("decoder_cached_states")
return_dict = return_dict if return_dict is not None else False
if labels is not None:
use_cache = False
outputs = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
encoder_outputs=encoder_outputs,
decoder_attention_mask=decoder_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# logits and loss for the encoder
# last hidden state
encoder_last_hidden_state = outputs['encoder_last_hidden_state']
# eos_mask = input_ids.eq(self.config.eos_token_id)
# if len(torch.unique(eos_mask.sum(1))) > 1:
# raise ValueError("All examples must have the same number of <eos> tokens.")
# sentence_representation = x[eos_mask, :].view(x.size(0), -1, x.size(-1))[:, -1, :]
encoder_logits = self.classification_head(encoder_last_hidden_state)
encoder_loss = None
if encoder_labels is not None:
# classification loss
if self.encoder_loss_type == 0:
# ZZ: seems like MSE loss does not support weighting, so only CEL has weighting applied for now
loss_fct = nn.CrossEntropyLoss(weight=self.label_weights)
encoder_loss = loss_fct(
encoder_logits.view(-1, self.config.num_labels), encoder_labels.view(-1))
# regression loss
else:
encoder_logits = encoder_logits.view(
encoder_logits.size(0), -1)
encoder_logits = torch.sigmoid(
encoder_logits) * self.num_labels - 0.5
loss_fct = nn.MSELoss(reduction='none')
_loss = loss_fct(encoder_logits, encoder_labels)
encoder_loss = torch.mean(_loss[encoder_labels >= 0])
# encoder_loss =_loss[encoder_labels>=0]
# logits and loss for the decoder
lm_logits = F.linear(
outputs[0], self.model.shared.weight, bias=self.final_logits_bias)
masked_lm_loss = None
if labels is not None:
loss_fct = nn.CrossEntropyLoss()
# TODO(SS): do we need to ignore pad tokens in labels?
masked_lm_loss = loss_fct(
lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
loss = None
if masked_lm_loss is not None and encoder_loss is not None:
loss = encoder_loss * self.loss_weight + masked_lm_loss
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return CBartLMOutput(
loss=loss,
encoder_loss=encoder_loss,
decoder_loss=masked_lm_loss,
encoder_logits=encoder_logits,
logits=lm_logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
def prepare_inputs_for_generation(self, decoder_input_ids, past, attention_mask, use_cache, **kwargs):
assert past is not None, "past has to be defined for encoder_outputs"
encoder_outputs, past_key_values = past
return {
"input_ids": None, # encoder_outputs is defined. input_ids not needed
"encoder_outputs": encoder_outputs,
"past_key_values": past_key_values,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
# change this to avoid caching (presumably for debugging)
"use_cache": use_cache,
}
def adjust_logits_during_generation(self, logits, cur_len, max_length):
if cur_len == 1:
self._force_token_ids_generation(logits, self.config.bos_token_id)
if cur_len == max_length - 1 and self.config.eos_token_id is not None:
self._force_token_ids_generation(logits, self.config.eos_token_id)
return logits
def _force_token_ids_generation(self, scores, token_ids) -> None:
"""force one of token_ids to be generated by setting prob of all other tokens to 0"""
if isinstance(token_ids, int):
token_ids = [token_ids]
all_but_token_ids_mask = torch.tensor(
[x for x in range(self.config.vocab_size) if x not in token_ids],
dtype=torch.long,
device=next(self.parameters()).device,
)
assert len(
scores.shape) == 2, "scores should be of rank 2 with shape: [batch_size, vocab_size]"
scores[:, all_but_token_ids_mask] = -float("inf")
@staticmethod
def _reorder_cache(past, beam_idx):
((enc_out, enc_mask), past_key_values) = past
reordered_past = []
for layer_past in past_key_values:
# get the correct batch idx from decoder layer's batch dim for cross and self-attn
layer_past_new = {
attn_key: _reorder_buffer(attn_cache, beam_idx) for attn_key, attn_cache in layer_past.items()
}
reordered_past.append(layer_past_new)
new_enc_out = enc_out if enc_out is None else enc_out.index_select(
0, beam_idx)
new_enc_mask = enc_mask if enc_mask is None else enc_mask.index_select(
0, beam_idx)
past = ((new_enc_out, new_enc_mask), reordered_past)
return past
def get_encoder(self):
return self.model.encoder
def get_output_embeddings(self):
return _make_linear_from_emb(self.model.shared) # make it on the fly
def get_encoder_logits(self, input_ids, attention_mask=None):
# print(input_ids, attention_mask)
# encoder_outputs = self.model.get_encoder_outputs(
# self,
# input_ids,
# attention_mask=attention_mask,
# output_attentions=None,
# output_hidden_states=None,
# return_dict=None,
# )
encoder_outputs = self.model.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
return_dict=True
)
# logits and loss for the encoder
# last hidden state
encoder_last_hidden_state = encoder_outputs['last_hidden_state']
encoder_logits = self.classification_head(encoder_last_hidden_state)
# classification
if self.encoder_loss_type == 0:
# probs = torch.softmax(encoder_logits,dim=-1)
pass
# regression
else:
encoder_logits = encoder_logits.view(encoder_logits.size(0), -1)
encoder_logits = torch.sigmoid(
encoder_logits) * self.num_labels - 0.5
return encoder_outputs, encoder_logits
class CBartLightning(LightningModule):
@staticmethod
def add_module_specific_args(parent_args):
parser = parent_args.add_argument_group("CBart specific parameters")
parser.add_argument('--num_labels', type=int, default=3)
parser.add_argument('--encoder_loss_type', type=int, default=0)
parser.add_argument('--loss_weight', type=float, default=1.0)
parser.add_argument('--label_weights', type=float, nargs='+', default=[1.0, 1.0, 1.0])
parser.add_argument('--masked_lm', type=float, default=0)
return parent_args
def __init__(
self,
args,
**kwargs,
):
super().__init__()
self.save_hyperparameters(args)
self.model = BartForTextInfill.from_pretrained(args.model_path, num_labels=self.hparams.num_labels,
encoder_loss_type=self.hparams.encoder_loss_type,
loss_weight=self.hparams.loss_weight,)
self.model.label_weights = torch.tensor(
self.hparams.label_weights, dtype=torch.half)
def forward(self, **inputs):
return self.model(**inputs)
def training_step(self, batch, batch_idx):
outputs = self(**batch)
return outputs
def validation_step(self, batch, batch_idx, dataloader_idx=0):
outputs = self(**batch)
val_loss = outputs["loss"]
return {"loss": val_loss}
def setup(self, stage=None) -> None:
if stage != "fit":
return
# Get dataloader by calling it - train_dataloader() is called after setup() by default
train_loader = self.trainer._data_connector._train_dataloader_source.dataloader()
# Calculate total steps
tb_size = self.hparams.train_batchsize * max(1, self.trainer.gpus)
ab_size = self.trainer.accumulate_grad_batches * float(self.trainer.max_epochs)
self.total_steps = (len(train_loader.dataset) // tb_size) // ab_size
def configure_optimizers(self):
transformer_utils.configure_optimizers(self)