File size: 17,777 Bytes
50f0fbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
import warnings
from pytorch_lightning import LightningModule
from fengshen.models import transformer_utils

import torch
import torch.utils.checkpoint
from torch import nn
import torch.nn.functional as F

from dataclasses import dataclass
from typing import Optional, Tuple

from transformers.file_utils import *
from transformers.modeling_outputs import *
from transformers.models.bart import *
from transformers.models.bart.modeling_bart import BartClassificationHead


_CONFIG_FOR_DOC = "BartConfig"


# ------------------------ ZZ: CBart addition ------------------------


def _reorder_buffer(attn_cache, new_order):
    for k, input_buffer_k in attn_cache.items():
        if input_buffer_k is not None:
            attn_cache[k] = input_buffer_k.index_select(0, new_order)
    return attn_cache


def _make_linear_from_emb(emb):
    vocab_size, emb_size = emb.weight.shape
    lin_layer = nn.Linear(vocab_size, emb_size, bias=False)
    lin_layer.weight.data = emb.weight.data
    return lin_layer


BART_GENERATION_EXAMPLE = r"""
    Summarization example::

        >>> from transformers import BartTokenizer, BartForConditionalGeneration, BartConfig

        >>> model = BartForConditionalGeneration.from_pretrained('facebook/bart-large-cnn')
        >>> tokenizer = BartTokenizer.from_pretrained('facebook/bart-large-cnn')

        >>> ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs."
        >>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors='pt')

        >>> # Generate Summary
        >>> summary_ids = model.generate(inputs['input_ids'], num_beams=4, max_length=5, early_stopping=True)
        >>> print([tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in summary_ids])

    Mask filling example::

        >>> from transformers import BartTokenizer, BartForConditionalGeneration
        >>> tokenizer = BartTokenizer.from_pretrained('facebook/bart-large')
        >>> TXT = "My friends are <mask> but they eat too many carbs."

        >>> model = BartForConditionalGeneration.from_pretrained('facebook/bart-large')
        >>> input_ids = tokenizer([TXT], return_tensors='pt')['input_ids']
        >>> logits = model(input_ids).logits

        >>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item()
        >>> probs = logits[0, masked_index].softmax(dim=0)
        >>> values, predictions = probs.topk(5)

        >>> tokenizer.decode(predictions).split()
"""


@dataclass
class CBartLMOutput(ModelOutput):
    """
    Base class for CBart specific language models outputs.

    Args:
        ....
    """
    loss: Optional[torch.FloatTensor] = None
    encoder_loss: Optional[torch.FloatTensor] = None
    decoder_loss: Optional[torch.FloatTensor] = None
    encoder_logits: torch.FloatTensor = None
    logits: torch.FloatTensor = None
    past_key_values: Optional[Tuple[torch.FloatTensor]] = None
    decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
    encoder_last_hidden_state: Optional[torch.FloatTensor] = None
    encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None


class BartForTextInfill(BartPretrainedModel):
    """
    this class is designed for text infilling.
    During training, the encoder is used to predict replace, insert,
    and the decoder is used to generate original input.
    Compared with BartForConditionalGeneration class,
    we add a module over the encoder and add a new loss for the encoder.
    """
    base_model_prefix = "model"
    authorized_missing_keys = [r"final_logits_bias",
                               r"encoder\.version", r"decoder\.version"]

    def __init__(self, config: BartConfig):
        super().__init__(config)
        base_model = BartModel(config)
        self.model = base_model
        self.register_buffer("final_logits_bias", torch.zeros(
            (1, self.model.shared.num_embeddings)))
        # print( config.encoder_loss_type, config.num_labels)

        # add a new attribute into BartConfig class (revise BartConfig)
        self.encoder_loss_type = config.encoder_loss_type
        self.num_labels = config.num_labels
        if self.encoder_loss_type == 0:  # 0 is classification loss, 1 is regression loss
            # add a classification module for the encoder
            self.classification_head = BartClassificationHead(
                config.d_model, config.d_model, config.num_labels, config.classif_dropout,
            )
        else:
            # add a regression module for the encoder
            self.classification_head = BartClassificationHead(
                config.d_model, config.d_model, 1, config.classif_dropout,
            )

        self.model._init_weights(self.classification_head.dense)
        self.model._init_weights(self.classification_head.out_proj)
        self.loss_weight = config.loss_weight
        self.register_buffer("label_weights", torch.zeros((self.num_labels)))

    def resize_token_embeddings(self, new_num_tokens: int) -> nn.Embedding:
        old_num_tokens = self.model.shared.num_embeddings
        new_embeddings = super().resize_token_embeddings(new_num_tokens)
        self.model.shared = new_embeddings
        self._resize_final_logits_bias(new_num_tokens, old_num_tokens)
        return new_embeddings

    def _resize_final_logits_bias(self, new_num_tokens: int, old_num_tokens: int) -> None:
        if new_num_tokens <= old_num_tokens:
            new_bias = self.final_logits_bias[:, :new_num_tokens]
        else:
            extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens),
                                     device=self.final_logits_bias.device)
            new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1)
        self.register_buffer("final_logits_bias", new_bias)

    @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
    @add_end_docstrings(BART_GENERATION_EXAMPLE)
    def forward(
        self,
        input_ids,
        attention_mask=None,
        encoder_outputs=None,
        decoder_input_ids=None,
        decoder_attention_mask=None,
        past_key_values=None,
        encoder_labels=None,
        labels=None,
        use_cache=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=True,
        **unused,
    ):
        r"""
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
            Labels for computing the masked language modeling loss.
            Indices should either be in ``[0, ..., config.vocab_size]`` or -100 (see ``input_ids`` docstring).
            Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens
            with labels in ``[0, ..., config.vocab_size]``.

    Returns:

    Conditional generation example::

            # Mask filling only works for bart-large
            from transformers import BartTokenizer, BartForConditionalGeneration
            tokenizer = BartTokenizer.from_pretrained('facebook/bart-large')
            TXT = "My friends are <mask> but they eat too many carbs."

            model = BartForConditionalGeneration.from_pretrained('facebook/bart-large')
            input_ids = tokenizer([TXT], return_tensors='pt')['input_ids']
            logits = model(input_ids).logits

            masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item()
            probs = logits[0, masked_index].softmax(dim=0)
            values, predictions = probs.topk(5)

            tokenizer.decode(predictions).split()
            # ['good', 'great', 'all', 'really', 'very']
        """
        if "lm_labels" in unused:
            warnings.warn(
                "The `lm_labels` argument is deprecated and will be removed in a future version, use `labels` instead.",
                FutureWarning,
            )
            labels = unused.pop("lm_labels")
        if "decoder_cached_states" in unused:
            warnings.warn(
                "The `decoder_cached_states` argument is deprecated and will be removed in a future version, use `decoder_past_key_values` instead.",
                FutureWarning,
            )
            decoder_past_key_values = unused.pop("decoder_cached_states")
        return_dict = return_dict if return_dict is not None else False

        if labels is not None:
            use_cache = False

        outputs = self.model(
            input_ids,
            attention_mask=attention_mask,
            decoder_input_ids=decoder_input_ids,
            encoder_outputs=encoder_outputs,
            decoder_attention_mask=decoder_attention_mask,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        # logits and loss for the encoder
        # last hidden state
        encoder_last_hidden_state = outputs['encoder_last_hidden_state']
        # eos_mask = input_ids.eq(self.config.eos_token_id)
        # if len(torch.unique(eos_mask.sum(1))) > 1:
        #     raise ValueError("All examples must have the same number of <eos> tokens.")
        # sentence_representation = x[eos_mask, :].view(x.size(0), -1, x.size(-1))[:, -1, :]
        encoder_logits = self.classification_head(encoder_last_hidden_state)
        encoder_loss = None
        if encoder_labels is not None:
            # classification loss
            if self.encoder_loss_type == 0:
                # ZZ: seems like MSE loss does not support weighting, so only CEL has weighting applied for now
                loss_fct = nn.CrossEntropyLoss(weight=self.label_weights)
                encoder_loss = loss_fct(
                    encoder_logits.view(-1, self.config.num_labels), encoder_labels.view(-1))
            # regression loss
            else:
                encoder_logits = encoder_logits.view(
                    encoder_logits.size(0), -1)
                encoder_logits = torch.sigmoid(
                    encoder_logits) * self.num_labels - 0.5
                loss_fct = nn.MSELoss(reduction='none')
                _loss = loss_fct(encoder_logits, encoder_labels)
                encoder_loss = torch.mean(_loss[encoder_labels >= 0])
                # encoder_loss =_loss[encoder_labels>=0]

        # logits and loss for the decoder
        lm_logits = F.linear(
            outputs[0], self.model.shared.weight, bias=self.final_logits_bias)
        masked_lm_loss = None
        if labels is not None:
            loss_fct = nn.CrossEntropyLoss()
            # TODO(SS): do we need to ignore pad tokens in labels?
            masked_lm_loss = loss_fct(
                lm_logits.view(-1, self.config.vocab_size), labels.view(-1))

        loss = None
        if masked_lm_loss is not None and encoder_loss is not None:
            loss = encoder_loss * self.loss_weight + masked_lm_loss

        if not return_dict:
            output = (lm_logits,) + outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return CBartLMOutput(
            loss=loss,
            encoder_loss=encoder_loss,
            decoder_loss=masked_lm_loss,
            encoder_logits=encoder_logits,
            logits=lm_logits,
            past_key_values=outputs.past_key_values,
            decoder_hidden_states=outputs.decoder_hidden_states,
            decoder_attentions=outputs.decoder_attentions,
            encoder_last_hidden_state=outputs.encoder_last_hidden_state,
            encoder_hidden_states=outputs.encoder_hidden_states,
            encoder_attentions=outputs.encoder_attentions,
        )

    def prepare_inputs_for_generation(self, decoder_input_ids, past, attention_mask, use_cache, **kwargs):
        assert past is not None, "past has to be defined for encoder_outputs"

        encoder_outputs, past_key_values = past
        return {
            "input_ids": None,  # encoder_outputs is defined. input_ids not needed
            "encoder_outputs": encoder_outputs,
            "past_key_values": past_key_values,
            "decoder_input_ids": decoder_input_ids,
            "attention_mask": attention_mask,
            # change this to avoid caching (presumably for debugging)
            "use_cache": use_cache,
        }

    def adjust_logits_during_generation(self, logits, cur_len, max_length):
        if cur_len == 1:
            self._force_token_ids_generation(logits, self.config.bos_token_id)
        if cur_len == max_length - 1 and self.config.eos_token_id is not None:
            self._force_token_ids_generation(logits, self.config.eos_token_id)
        return logits

    def _force_token_ids_generation(self, scores, token_ids) -> None:
        """force one of token_ids to be generated by setting prob of all other tokens to 0"""
        if isinstance(token_ids, int):
            token_ids = [token_ids]
        all_but_token_ids_mask = torch.tensor(
            [x for x in range(self.config.vocab_size) if x not in token_ids],
            dtype=torch.long,
            device=next(self.parameters()).device,
        )
        assert len(
            scores.shape) == 2, "scores should be of rank 2 with shape: [batch_size, vocab_size]"
        scores[:, all_but_token_ids_mask] = -float("inf")

    @staticmethod
    def _reorder_cache(past, beam_idx):
        ((enc_out, enc_mask), past_key_values) = past
        reordered_past = []
        for layer_past in past_key_values:
            # get the correct batch idx from decoder layer's batch dim for cross and self-attn
            layer_past_new = {
                attn_key: _reorder_buffer(attn_cache, beam_idx) for attn_key, attn_cache in layer_past.items()
            }
            reordered_past.append(layer_past_new)

        new_enc_out = enc_out if enc_out is None else enc_out.index_select(
            0, beam_idx)
        new_enc_mask = enc_mask if enc_mask is None else enc_mask.index_select(
            0, beam_idx)

        past = ((new_enc_out, new_enc_mask), reordered_past)
        return past

    def get_encoder(self):
        return self.model.encoder

    def get_output_embeddings(self):
        return _make_linear_from_emb(self.model.shared)  # make it on the fly

    def get_encoder_logits(self, input_ids, attention_mask=None):
        # print(input_ids, attention_mask)
        # encoder_outputs = self.model.get_encoder_outputs(
        #         self,
        #         input_ids,
        #         attention_mask=attention_mask,
        #         output_attentions=None,
        #         output_hidden_states=None,
        #         return_dict=None,
        #  )

        encoder_outputs = self.model.encoder(
            input_ids=input_ids,
            attention_mask=attention_mask,
            return_dict=True
        )
        # logits and loss for the encoder
        # last hidden state
        encoder_last_hidden_state = encoder_outputs['last_hidden_state']
        encoder_logits = self.classification_head(encoder_last_hidden_state)

        # classification
        if self.encoder_loss_type == 0:
            # probs = torch.softmax(encoder_logits,dim=-1)
            pass
        # regression
        else:
            encoder_logits = encoder_logits.view(encoder_logits.size(0), -1)
            encoder_logits = torch.sigmoid(
                encoder_logits) * self.num_labels - 0.5
        return encoder_outputs, encoder_logits


class CBartLightning(LightningModule):
    @staticmethod
    def add_module_specific_args(parent_args):
        parser = parent_args.add_argument_group("CBart specific parameters")
        parser.add_argument('--num_labels', type=int, default=3)
        parser.add_argument('--encoder_loss_type', type=int, default=0)
        parser.add_argument('--loss_weight', type=float, default=1.0)
        parser.add_argument('--label_weights', type=float, nargs='+', default=[1.0, 1.0, 1.0])
        parser.add_argument('--masked_lm', type=float, default=0)
        return parent_args

    def __init__(
        self,
        args,
        **kwargs,
    ):
        super().__init__()
        self.save_hyperparameters(args)
        self.model = BartForTextInfill.from_pretrained(args.model_path, num_labels=self.hparams.num_labels,
                                                       encoder_loss_type=self.hparams.encoder_loss_type,
                                                       loss_weight=self.hparams.loss_weight,)
        self.model.label_weights = torch.tensor(
            self.hparams.label_weights, dtype=torch.half)

    def forward(self, **inputs):
        return self.model(**inputs)

    def training_step(self, batch, batch_idx):
        outputs = self(**batch)
        return outputs

    def validation_step(self, batch, batch_idx, dataloader_idx=0):
        outputs = self(**batch)
        val_loss = outputs["loss"]

        return {"loss": val_loss}

    def setup(self, stage=None) -> None:
        if stage != "fit":
            return
        # Get dataloader by calling it - train_dataloader() is called after setup() by default
        train_loader = self.trainer._data_connector._train_dataloader_source.dataloader()

        # Calculate total steps
        tb_size = self.hparams.train_batchsize * max(1, self.trainer.gpus)
        ab_size = self.trainer.accumulate_grad_batches * float(self.trainer.max_epochs)
        self.total_steps = (len(train_loader.dataset) // tb_size) // ab_size

    def configure_optimizers(self):
        transformer_utils.configure_optimizers(self)