Spaces:
AIR-Bench
/
Running on CPU Upgrade

nan's picture
feat: adapt the data loading part
8b7a945
raw
history blame
1.84 kB
from dataclasses import dataclass, make_dataclass
from src.benchmarks import Benchmarks
def fields(raw_class):
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
# These classes are for user facing column names,
# to avoid having to change them all around the code
# when a modification is needed
@dataclass
class ColumnContent:
name: str
type: str
displayed_by_default: bool
hidden: bool = False
never_hidden: bool = False
## Leaderboard columns
auto_eval_column_dict = []
# Init
auto_eval_column_dict.append(
["retrieval_model", ColumnContent, ColumnContent("Retrieval Model", "markdown", True, never_hidden=True)]
)
auto_eval_column_dict.append(
["reranking_model", ColumnContent, ColumnContent("Reranking Model", "markdown", True, never_hidden=True)]
)
auto_eval_column_dict.append(
["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)]
)
for benchmark in Benchmarks:
auto_eval_column_dict.append(
[benchmark.name, ColumnContent, ColumnContent(benchmark.value.col_name, "number", True)]
)
# We use make dataclass to dynamically fill the scores from Tasks
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
## For the queue columns in the submission tab
@dataclass(frozen=True)
class EvalQueueColumn: # Queue column
model = ColumnContent("model", "markdown", True)
status = ColumnContent("status", "str", True)
# Column selection
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
BENCHMARK_COLS = [t.value.col_name for t in Benchmarks]