Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
from dataclasses import dataclass, make_dataclass | |
from src.benchmarks import Benchmarks | |
def fields(raw_class): | |
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"] | |
# These classes are for user facing column names, | |
# to avoid having to change them all around the code | |
# when a modification is needed | |
class ColumnContent: | |
name: str | |
type: str | |
displayed_by_default: bool | |
hidden: bool = False | |
never_hidden: bool = False | |
## Leaderboard columns | |
auto_eval_column_dict = [] | |
# Init | |
auto_eval_column_dict.append( | |
["retrieval_model", ColumnContent, ColumnContent("Retrieval Model", "markdown", True, never_hidden=True)] | |
) | |
auto_eval_column_dict.append( | |
["reranking_model", ColumnContent, ColumnContent("Reranking Model", "markdown", True, never_hidden=True)] | |
) | |
auto_eval_column_dict.append( | |
["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)] | |
) | |
for benchmark in Benchmarks: | |
auto_eval_column_dict.append( | |
[benchmark.name, ColumnContent, ColumnContent(benchmark.value.col_name, "number", True)] | |
) | |
# We use make dataclass to dynamically fill the scores from Tasks | |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True) | |
## For the queue columns in the submission tab | |
class EvalQueueColumn: # Queue column | |
model = ColumnContent("model", "markdown", True) | |
status = ColumnContent("status", "str", True) | |
# Column selection | |
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden] | |
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden] | |
COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden] | |
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)] | |
BENCHMARK_COLS = [t.value.col_name for t in Benchmarks] | |