from dataclasses import dataclass, make_dataclass from src.benchmarks import Benchmarks def fields(raw_class): return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"] # These classes are for user facing column names, # to avoid having to change them all around the code # when a modification is needed @dataclass class ColumnContent: name: str type: str displayed_by_default: bool hidden: bool = False never_hidden: bool = False ## Leaderboard columns auto_eval_column_dict = [] # Init auto_eval_column_dict.append( ["retrieval_model", ColumnContent, ColumnContent("Retrieval Model", "markdown", True, never_hidden=True)] ) auto_eval_column_dict.append( ["reranking_model", ColumnContent, ColumnContent("Reranking Model", "markdown", True, never_hidden=True)] ) auto_eval_column_dict.append( ["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)] ) for benchmark in Benchmarks: auto_eval_column_dict.append( [benchmark.name, ColumnContent, ColumnContent(benchmark.value.col_name, "number", True)] ) # We use make dataclass to dynamically fill the scores from Tasks AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True) ## For the queue columns in the submission tab @dataclass(frozen=True) class EvalQueueColumn: # Queue column model = ColumnContent("model", "markdown", True) status = ColumnContent("status", "str", True) # Column selection COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden] TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden] COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden] EVAL_COLS = [c.name for c in fields(EvalQueueColumn)] BENCHMARK_COLS = [t.value.col_name for t in Benchmarks]