|
--- |
|
license: apache-2.0 |
|
base_model: distilbert-base-multilingual-cased |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- swiss_law_area_prediction |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: modello_finetuning1 |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: swiss_law_area_prediction |
|
type: swiss_law_area_prediction |
|
config: main |
|
split: validation |
|
args: main |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.9922018189992046 |
|
- name: Recall |
|
type: recall |
|
value: 0.9901734200771951 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9911413155243709 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# modello_finetuning1 |
|
|
|
This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the swiss_law_area_prediction dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0506 |
|
- Precision: 0.9922 |
|
- Recall: 0.9902 |
|
- F1: 0.9911 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 6e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 2 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| |
|
| 0.0834 | 0.38 | 500 | 0.1812 | 0.9793 | 0.9677 | 0.9730 | |
|
| 0.1029 | 0.76 | 1000 | 0.0973 | 0.9875 | 0.9834 | 0.9854 | |
|
| 0.0066 | 1.15 | 1500 | 0.0647 | 0.9864 | 0.9886 | 0.9875 | |
|
| 0.0008 | 1.53 | 2000 | 0.0619 | 0.9913 | 0.9893 | 0.9902 | |
|
| 0.0003 | 1.91 | 2500 | 0.0506 | 0.9922 | 0.9902 | 0.9911 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.1 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|