SentenceTransformer based on google-bert/bert-base-uncased
This is a sentence-transformers model finetuned from google-bert/bert-base-uncased on the all-nli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: google-bert/bert-base-uncased
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'A construction worker peeking out of a manhole while his coworker sits on the sidewalk smiling.',
'A worker is looking out of a manhole.',
'The workers are both inside the manhole.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
all-nli
- Dataset: all-nli at d482672
- Size: 557,850 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 7 tokens
- mean: 10.46 tokens
- max: 46 tokens
- min: 6 tokens
- mean: 12.81 tokens
- max: 40 tokens
- min: 5 tokens
- mean: 13.4 tokens
- max: 50 tokens
- Samples:
anchor positive negative A person on a horse jumps over a broken down airplane.
A person is outdoors, on a horse.
A person is at a diner, ordering an omelette.
Children smiling and waving at camera
There are children present
The kids are frowning
A boy is jumping on skateboard in the middle of a red bridge.
The boy does a skateboarding trick.
The boy skates down the sidewalk.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
all-nli
- Dataset: all-nli at d482672
- Size: 6,584 evaluation samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 6 tokens
- mean: 17.95 tokens
- max: 63 tokens
- min: 4 tokens
- mean: 9.78 tokens
- max: 29 tokens
- min: 5 tokens
- mean: 10.35 tokens
- max: 29 tokens
- Samples:
anchor positive negative Two women are embracing while holding to go packages.
Two woman are holding packages.
The men are fighting outside a deli.
Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.
Two kids in numbered jerseys wash their hands.
Two kids in jackets walk to school.
A man selling donuts to a customer during a world exhibition event held in the city of Angeles
A man selling donuts to a customer.
A woman drinks her coffee in a small cafe.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 128per_device_eval_batch_size
: 128learning_rate
: 1e-05warmup_ratio
: 0.1batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 128per_device_eval_batch_size
: 128per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 1e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0011 | 5 | - | 2.7554 |
0.0023 | 10 | - | 2.7506 |
0.0034 | 15 | - | 2.7424 |
0.0046 | 20 | - | 2.7309 |
0.0057 | 25 | - | 2.7160 |
0.0069 | 30 | - | 2.6975 |
0.0080 | 35 | - | 2.6757 |
0.0092 | 40 | - | 2.6502 |
0.0103 | 45 | - | 2.6214 |
0.0115 | 50 | - | 2.5893 |
0.0126 | 55 | - | 2.5538 |
0.0138 | 60 | - | 2.5145 |
0.0149 | 65 | - | 2.4726 |
0.0161 | 70 | - | 2.4282 |
0.0172 | 75 | - | 2.3795 |
0.0184 | 80 | - | 2.3272 |
0.0195 | 85 | - | 2.2712 |
0.0206 | 90 | - | 2.2120 |
0.0218 | 95 | - | 2.1501 |
0.0229 | 100 | 3.6197 | 2.0866 |
0.0241 | 105 | - | 2.0223 |
0.0252 | 110 | - | 1.9571 |
0.0264 | 115 | - | 1.8907 |
0.0275 | 120 | - | 1.8239 |
0.0287 | 125 | - | 1.7583 |
0.0298 | 130 | - | 1.6938 |
0.0310 | 135 | - | 1.6316 |
0.0321 | 140 | - | 1.5719 |
0.0333 | 145 | - | 1.5148 |
0.0344 | 150 | - | 1.4598 |
0.0356 | 155 | - | 1.4081 |
0.0367 | 160 | - | 1.3612 |
0.0379 | 165 | - | 1.3182 |
0.0390 | 170 | - | 1.2803 |
0.0401 | 175 | - | 1.2463 |
0.0413 | 180 | - | 1.2160 |
0.0424 | 185 | - | 1.1895 |
0.0436 | 190 | - | 1.1654 |
0.0447 | 195 | - | 1.1435 |
0.0459 | 200 | 2.292 | 1.1240 |
0.0470 | 205 | - | 1.1065 |
0.0482 | 210 | - | 1.0907 |
0.0493 | 215 | - | 1.0761 |
0.0505 | 220 | - | 1.0623 |
0.0516 | 225 | - | 1.0493 |
0.0528 | 230 | - | 1.0374 |
0.0539 | 235 | - | 1.0260 |
0.0551 | 240 | - | 1.0147 |
0.0562 | 245 | - | 1.0043 |
0.0574 | 250 | - | 0.9941 |
0.0585 | 255 | - | 0.9849 |
0.0596 | 260 | - | 0.9763 |
0.0608 | 265 | - | 0.9682 |
0.0619 | 270 | - | 0.9602 |
0.0631 | 275 | - | 0.9525 |
0.0642 | 280 | - | 0.9451 |
0.0654 | 285 | - | 0.9375 |
0.0665 | 290 | - | 0.9303 |
0.0677 | 295 | - | 0.9231 |
0.0688 | 300 | 1.5711 | 0.9160 |
0.0700 | 305 | - | 0.9088 |
0.0711 | 310 | - | 0.9022 |
0.0723 | 315 | - | 0.8951 |
0.0734 | 320 | - | 0.8875 |
0.0746 | 325 | - | 0.8810 |
0.0757 | 330 | - | 0.8746 |
0.0769 | 335 | - | 0.8684 |
0.0780 | 340 | - | 0.8625 |
0.0791 | 345 | - | 0.8569 |
0.0803 | 350 | - | 0.8516 |
0.0814 | 355 | - | 0.8466 |
0.0826 | 360 | - | 0.8419 |
0.0837 | 365 | - | 0.8370 |
0.0849 | 370 | - | 0.8321 |
0.0860 | 375 | - | 0.8274 |
0.0872 | 380 | - | 0.8223 |
0.0883 | 385 | - | 0.8170 |
0.0895 | 390 | - | 0.8115 |
0.0906 | 395 | - | 0.8055 |
0.0918 | 400 | 1.3859 | 0.8004 |
0.0929 | 405 | - | 0.7955 |
0.0941 | 410 | - | 0.7906 |
0.0952 | 415 | - | 0.7856 |
0.0964 | 420 | - | 0.7809 |
0.0975 | 425 | - | 0.7759 |
0.0986 | 430 | - | 0.7707 |
0.0998 | 435 | - | 0.7654 |
0.1009 | 440 | - | 0.7603 |
0.1021 | 445 | - | 0.7556 |
0.1032 | 450 | - | 0.7516 |
Framework Versions
- Python: 3.12.8
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.2.0+cu121
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for sobamchan/bert-base-uncased-mean-450
Base model
google-bert/bert-base-uncased