sergiomvazq's picture
End of training
aea5502 verified
|
raw
history blame
2.39 kB
metadata
license: mit
base_model: microsoft/deberta-v3-small
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: DeBERTaV3_model_multilabel
    results: []

DeBERTaV3_model_multilabel

This model is a fine-tuned version of microsoft/deberta-v3-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3255
  • Accuracy: 0.8667
  • F1: 0.7333
  • Precision: 0.8148
  • Recall: 0.6667

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 5
  • eval_batch_size: 5
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 1.0 25 0.4956 0.7667 0.4167 0.6667 0.3030
No log 2.0 50 0.4877 0.7667 0.4167 0.6667 0.3030
No log 3.0 75 0.4476 0.7667 0.4167 0.6667 0.3030
No log 4.0 100 0.4332 0.7833 0.4800 0.7059 0.3636
No log 5.0 125 0.3847 0.8167 0.6071 0.7391 0.5152
No log 6.0 150 0.3680 0.8583 0.7302 0.7667 0.6970
No log 7.0 175 0.3332 0.8667 0.7500 0.7742 0.7273
No log 8.0 200 0.3545 0.85 0.7000 0.7778 0.6364
No log 9.0 225 0.3255 0.8667 0.7333 0.8148 0.6667
No log 10.0 250 0.3322 0.8583 0.7213 0.7857 0.6667

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1