BantuBERTa-vmw-finetuned-vmw-MICRO-finetuned-augmentation-LUNAR-TAPT-macro
This model is a fine-tuned version of sercetexam9/BantuBERTa-vmw-finetuned-vmw-MICRO on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1034
- F1: 0.6479
- Roc Auc: 0.7865
- Accuracy: 0.8202
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
---|---|---|---|---|---|---|
0.0976 | 1.0 | 169 | 0.0832 | 0.5497 | 0.7451 | 0.8603 |
0.0954 | 2.0 | 338 | 0.0827 | 0.5716 | 0.7592 | 0.8559 |
0.0741 | 3.0 | 507 | 0.0908 | 0.6196 | 0.7925 | 0.8544 |
0.063 | 4.0 | 676 | 0.1013 | 0.5531 | 0.7366 | 0.8187 |
0.0543 | 5.0 | 845 | 0.0973 | 0.6451 | 0.7815 | 0.8410 |
0.0546 | 6.0 | 1014 | 0.0998 | 0.5903 | 0.7584 | 0.8321 |
0.0516 | 7.0 | 1183 | 0.1034 | 0.6479 | 0.7865 | 0.8202 |
0.0472 | 8.0 | 1352 | 0.1215 | 0.5481 | 0.7332 | 0.7949 |
0.0374 | 9.0 | 1521 | 0.1061 | 0.6245 | 0.7993 | 0.8202 |
0.0366 | 10.0 | 1690 | 0.1071 | 0.5765 | 0.7619 | 0.8291 |
0.0426 | 11.0 | 1859 | 0.1093 | 0.6066 | 0.7643 | 0.8276 |
Framework versions
- Transformers 4.45.1
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0
- Downloads last month
- 20
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for sercetexam9/BantuBERTa-vmw-finetuned-vmw-MICRO-finetuned-augmentation-LUNAR-TAPT-macro
Base model
dsfsi/BantuBERTa
Finetuned
Kuongan/BantuBERTa-vmw-finetuned