|
--- |
|
library_name: scvi-tools |
|
license: cc-by-4.0 |
|
tags: |
|
- biology |
|
- genomics |
|
- single-cell |
|
- model_cls_name:TOTALVI |
|
- scvi_version:1.2.0 |
|
- anndata_version:0.11.1 |
|
- modality:rna |
|
- modality:protein |
|
- tissue:thymus |
|
- annotated:True |
|
--- |
|
|
|
|
|
TotalVI is a variational inference model for single-cell RNA-seq as well as protein data that can |
|
learn an underlying latent space, integrate technical batches, impute dropouts, |
|
and predict protein expression given gene expression or missing protein data given gene expression |
|
and protein data for a subset of proteins. |
|
The learned low-dimensional latent representation of the data can be used for visualization and |
|
clustering. |
|
|
|
TotalVI takes as input a scRNA-seq gene expression and protein expression matrix with cells and |
|
genes. |
|
We provide an extensive [user guide](https://docs.scvi-tools.org/en/1.2.0/user_guide/models/totalvi.html). |
|
|
|
- See our original manuscript for further details of the model: |
|
[TotalVI manuscript](https://www.nature.com/articles/s41592-020-01050-x). |
|
- See our manuscript on [scvi-hub](https://www.biorxiv.org/content/10.1101/2024.03.01.582887v2) |
|
how to leverage pre-trained models. |
|
|
|
This model can be used for fine tuning on new data using our Arches framework: |
|
[Arches tutorial](https://docs.scvi-tools.org/en/1.0.0/tutorials/notebooks/scarches_scvi_tools.html). |
|
|
|
|
|
# Model Description |
|
|
|
CITE-seq to measure RNA and surface proteins in thymocytes from wild-type and T cell lineage-restricted mice to generate a comprehensive timeline of cell state for each T cell lineage. |
|
|
|
# Metrics |
|
|
|
We provide here key performance metrics for the uploaded model, if provided by the data uploader. |
|
|
|
<details> |
|
<summary><strong>Coefficient of variation</strong></summary> |
|
|
|
The cell-wise coefficient of variation summarizes how well variation between different cells is |
|
preserved by the generated model expression. Below a squared Pearson correlation coefficient of 0.4 |
|
, we would recommend not to use generated data for downstream analysis, while the generated latent |
|
space might still be useful for analysis. |
|
|
|
**Cell-wise Coefficient of Variation**: |
|
|
|
Modality: rna |
|
|
|
| Metric | Training Value | Validation Value | |
|
|-------------------------|----------------|------------------| |
|
| Mean Absolute Error | 2.12 | 2.10 | |
|
| Pearson Correlation | 0.54 | 0.61 | |
|
| Spearman Correlation | 0.62 | 0.61 | |
|
| R² (R-Squared) | -3.43 | -5.98 | |
|
|
|
Modality: protein |
|
|
|
| Metric | Training Value | Validation Value | |
|
|-------------------------|----------------|------------------| |
|
| Mean Absolute Error | 0.23 | 0.23 | |
|
| Pearson Correlation | 0.72 | 0.72 | |
|
| Spearman Correlation | 0.71 | 0.71 | |
|
| R² (R-Squared) | 0.38 | 0.40 | |
|
|
|
|
|
|
|
The gene-wise coefficient of variation summarizes how well variation between different genes is |
|
preserved by the generated model expression. This value is usually quite high. |
|
|
|
**Gene-wise Coefficient of Variation**: |
|
|
|
Modality: rna |
|
|
|
| Metric | Training Value | |
|
|-------------------------|----------------| |
|
| Mean Absolute Error | 5.44 | |
|
| Pearson Correlation | 0.85 | |
|
| Spearman Correlation | 0.98 | |
|
| R² (R-Squared) | 0.68 | |
|
|
|
Modality: protein |
|
|
|
| Metric | Training Value | |
|
|-------------------------|----------------| |
|
| Mean Absolute Error | 0.23 | |
|
| Pearson Correlation | 0.93 | |
|
| Spearman Correlation | 0.96 | |
|
| R² (R-Squared) | 0.59 | |
|
|
|
|
|
|
|
</details> |
|
|
|
<details> |
|
<summary><strong>Differential expression metric</strong></summary> |
|
|
|
The differential expression metric provides a summary of the differential expression analysis |
|
between cell types or input clusters. We provide here the F1-score, Pearson Correlation |
|
Coefficient of Log-Foldchanges, Spearman Correlation Coefficient, and Area Under the Precision |
|
Recall Curve (AUPRC) for the differential expression analysis using Wilcoxon Rank Sum test for each |
|
cell-type. |
|
|
|
**Differential expression**: |
|
|
|
Modality: rna |
|
|
|
| Index | gene_f1 | lfc_mae | lfc_pearson | lfc_spearman | roc_auc | pr_auc | n_cells | |
|
| --- | --- | --- | --- | --- | --- | --- | --- | |
|
| DP (Q2) | 0.88 | 2.15 | 0.45 | 0.82 | 0.08 | 0.02 | 10864.00 | |
|
| DP (Sig.) | 0.84 | 2.10 | 0.39 | 0.85 | 0.03 | 0.02 | 9824.00 | |
|
| DP (Q1) | 0.90 | 1.90 | 0.44 | 0.84 | 0.02 | 0.02 | 8556.00 | |
|
| Mature CD4 | 0.93 | 2.20 | 0.55 | 0.88 | 0.05 | 0.02 | 6525.00 | |
|
| Immature CD8 | 0.94 | 2.19 | 0.51 | 0.86 | 0.02 | 0.02 | 5686.00 | |
|
| DP (P) | 0.92 | 1.37 | 0.62 | 0.95 | 0.85 | 0.08 | 5593.00 | |
|
| Immature CD4 | 0.90 | 2.17 | 0.52 | 0.85 | 0.02 | 0.02 | 5164.00 | |
|
| Mature CD8 | 0.87 | 2.38 | 0.51 | 0.87 | 0.34 | 0.07 | 4234.00 | |
|
| DN | 0.80 | 1.59 | 0.57 | 0.93 | 0.68 | 0.13 | 2395.00 | |
|
| GD T | 0.82 | 2.40 | 0.54 | 0.79 | 0.34 | 0.33 | 2279.00 | |
|
| Treg | 0.88 | 2.55 | 0.52 | 0.77 | 0.42 | 0.37 | 1966.00 | |
|
| Neg. sel. (2) | 0.84 | 2.72 | 0.61 | 0.75 | 0.29 | 0.26 | 1560.00 | |
|
| Dying | 0.65 | 3.33 | 0.51 | 0.49 | 0.02 | 0.01 | 1552.00 | |
|
| Neg. sel. (1) | 0.77 | 3.01 | 0.57 | 0.73 | 0.20 | 0.12 | 1206.00 | |
|
| Mature cycling | 0.87 | 2.65 | 0.59 | 0.84 | 0.78 | 0.71 | 992.00 | |
|
| Interferon sig. | 0.85 | 2.93 | 0.63 | 0.64 | 0.26 | 0.15 | 984.00 | |
|
| NKT | 0.65 | 2.21 | 0.52 | 0.77 | 0.58 | 0.40 | 928.00 | |
|
| Myeloid | 0.86 | 1.61 | 0.62 | 0.85 | 0.54 | 0.41 | 908.00 | |
|
| Doublet | 0.51 | 3.48 | 0.49 | 0.39 | 0.30 | 0.03 | 677.00 | |
|
| B | 0.81 | 4.19 | 0.62 | 0.60 | 0.26 | 0.02 | 106.00 | |
|
| Erythrocyte | 0.82 | 4.84 | 0.58 | 0.46 | 0.42 | 0.02 | 43.00 | |
|
|
|
Modality: protein |
|
|
|
| Index | gene_f1 | lfc_mae | lfc_pearson | lfc_spearman | roc_auc | pr_auc | n_cells | |
|
| --- | --- | --- | --- | --- | --- | --- | --- | |
|
| DP (Q2) | 0.91 | 0.04 | 1.00 | 0.99 | 0.11 | 0.15 | 10864.00 | |
|
| DP (Sig.) | 1.00 | 0.03 | 0.99 | 0.97 | 0.27 | 0.32 | 9824.00 | |
|
| DP (Q1) | 0.91 | 0.04 | 1.00 | 1.00 | 0.11 | 0.15 | 8556.00 | |
|
| Mature CD4 | 1.00 | 0.06 | 1.00 | 1.00 | 0.11 | 0.15 | 6525.00 | |
|
| Immature CD8 | 0.82 | 0.05 | 0.99 | 0.99 | 0.36 | 0.38 | 5686.00 | |
|
| DP (P) | 1.00 | 0.06 | 0.99 | 0.97 | 0.25 | 0.18 | 5593.00 | |
|
| Immature CD4 | 1.00 | 0.04 | 1.00 | 0.98 | 0.27 | 0.27 | 5164.00 | |
|
| Mature CD8 | 1.00 | 0.07 | 0.99 | 0.98 | 0.09 | 0.15 | 4234.00 | |
|
| DN | 0.91 | 0.08 | 1.00 | 0.97 | 0.43 | 0.23 | 2395.00 | |
|
| GD T | 1.00 | 0.09 | 0.99 | 0.98 | 0.73 | 0.75 | 2279.00 | |
|
| Treg | 1.00 | 0.06 | 1.00 | 0.99 | 0.64 | 0.67 | 1966.00 | |
|
| Neg. sel. (2) | 1.00 | 0.07 | 0.99 | 0.98 | 0.64 | 0.67 | 1560.00 | |
|
| Dying | 0.91 | 0.07 | 0.98 | 0.97 | 0.55 | 0.58 | 1552.00 | |
|
| Neg. sel. (1) | 0.91 | 0.07 | 0.99 | 0.97 | 0.64 | 0.66 | 1206.00 | |
|
| Mature cycling | 0.91 | 0.08 | 0.99 | 0.97 | 0.45 | 0.50 | 992.00 | |
|
| Interferon sig. | 0.91 | 0.07 | 0.96 | 0.86 | 0.46 | 0.45 | 984.00 | |
|
| NKT | 0.91 | 0.11 | 0.99 | 0.98 | 0.64 | 0.67 | 928.00 | |
|
| Myeloid | 1.00 | 0.09 | 0.99 | 0.97 | 0.91 | 0.92 | 908.00 | |
|
| Doublet | 0.64 | 0.11 | 0.81 | 0.84 | 0.94 | 0.76 | 677.00 | |
|
| B | 0.91 | 0.30 | 0.98 | 0.92 | 0.82 | 0.81 | 106.00 | |
|
| Erythrocyte | 0.64 | 0.41 | 0.94 | 0.85 | 0.49 | 0.62 | 43.00 | |
|
|
|
|
|
|
|
</details> |
|
|
|
# Model Properties |
|
|
|
We provide here key parameters used to setup and train the model. |
|
|
|
<details> |
|
<summary><strong>Model Parameters</strong></summary> |
|
|
|
These provide the settings to setup the original model: |
|
```json |
|
{ |
|
"n_latent": 20, |
|
"gene_dispersion": "gene", |
|
"protein_dispersion": "protein", |
|
"gene_likelihood": "nb", |
|
"latent_distribution": "normal", |
|
"empirical_protein_background_prior": null, |
|
"override_missing_proteins": false |
|
} |
|
``` |
|
|
|
</details> |
|
|
|
<details> |
|
<summary><strong>Setup Data Arguments</strong></summary> |
|
|
|
Arguments passed to setup_anndata of the original model: |
|
```json |
|
{ |
|
"rna_layer": "counts", |
|
"protein_layer": null, |
|
"batch_key": "sample_id", |
|
"size_factor_key": null, |
|
"categorical_covariate_keys": null, |
|
"continuous_covariate_keys": null, |
|
"modalities": { |
|
"rna_layer": "rna", |
|
"protein_layer": "protein", |
|
"batch_key": "rna" |
|
} |
|
} |
|
``` |
|
|
|
</details> |
|
|
|
<details> |
|
<summary><strong>Data Registry</strong></summary> |
|
|
|
Registry elements for AnnData manager: |
|
| Registry Key | scvi-tools Location | |
|
|--------------------------|--------------------------------------| |
|
| X | adata.mod['rna'].layers['counts'] | |
|
| batch | adata.mod['rna'].obs['_scvi_batch'] | |
|
| labels | adata.obs['_scvi_labels'] | |
|
| latent_qzm | adata.obsm['totalvi_latent_qzm'] | |
|
| latent_qzv | adata.obsm['totalvi_latent_qzv'] | |
|
| minify_type | adata.uns['_scvi_adata_minify_type'] | |
|
| observed_lib_size | adata.obs['observed_lib_size'] | |
|
| proteins | adata.mod['protein'].X | |
|
|
|
- **Data is Minified**: False |
|
|
|
</details> |
|
|
|
<details> |
|
<summary><strong>Summary Statistics</strong></summary> |
|
|
|
| Summary Stat Key | Value | |
|
|--------------------------|-------| |
|
| n_batch | 17 | |
|
| n_cells | 72042 | |
|
| n_extra_categorical_covs | 0 | |
|
| n_extra_continuous_covs | 0 | |
|
| n_labels | 1 | |
|
| n_latent_qzm | 20 | |
|
| n_latent_qzv | 20 | |
|
| n_proteins | 111 | |
|
| n_vars | 4000 | |
|
|
|
</details> |
|
|
|
|
|
<details> |
|
<summary><strong>Training</strong></summary> |
|
|
|
<!-- If your model is not uploaded with any data (e.g., minified data) on the Model Hub, then make |
|
sure to provide this field if you want users to be able to access your training data. See the |
|
scvi-tools documentation for details. --> |
|
**Training data url**: Not provided by uploader |
|
|
|
If provided by the original uploader, for those interested in understanding or replicating the |
|
training process, the code is available at the link below. |
|
|
|
**Training Code URL**: https://github.com/YosefLab/Thymus_CITE-seq/blob/main/totalVI_AllData/totalVI_thymus111.ipynb |
|
|
|
</details> |
|
|
|
|
|
# References |
|
|
|
Steier, Z., Aylard, D.A., McIntyre, L.L. et al. Single-cell multiomic analysis of thymocyte development reveals drivers of CD4+ T cell and CD8+ T cell lineage commitment. Nat Immunol 24, 1579–1590 (2023). https://doi.org/10.1038/s41590-023-01584-0. |
|
|