tiny-lm
This repository provides a tiny 16M parameters language model for debugging and testing purposes. This is created by tuning sbintuitions/tiny-lm with oasset1 datasets in Japanese and English.
How to use
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
model = AutoModelForCausalLM.from_pretrained("sbintuitions/tiny-lm-chat", torch_dtype="auto")
tokenizer = AutoTokenizer.from_pretrained("sbintuitions/tiny-lm-chat", use_fast=False)
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
prompt = tokenizer.apply_chat_template([{"role": "user", "content": "Hello!"}], add_generation_prompt=True, tokenize=False)
print(generator(prompt, max_length=30, do_sample=True, top_k=100))
Model architecture
A 4-layer, 512-hidden-size transformer-based language model.
Training
The model was first pre-trained on English Wikipedia and Japanese Wikipedia to optimize a traditional language modelling objective for 25B tokens. And then it was fine-tuned on oasst1 datasets in Japanese and English for 15 epochs.
License
- Downloads last month
- 1,753
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.