sarasarasara's picture
End of training
02022c4 verified
|
raw
history blame
2.69 kB
metadata
library_name: transformers
license: apache-2.0
base_model: facebook/hubert-base-ls960
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: hubert-base-ls960-2clsfinetuned-bmd-V1-20250201_145011-LOSO-section-out5
    results: []

hubert-base-ls960-2clsfinetuned-bmd-V1-20250201_145011-LOSO-section-out5

This model is a fine-tuned version of facebook/hubert-base-ls960 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7381
  • Accuracy: 0.7273
  • F1: 0.7273
  • Precision: 0.7273
  • Recall: 0.7273

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 1968
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 1.0 5 0.6674 0.5909 0.5087 0.775 0.5909
0.6794 2.0 10 0.6130 0.7727 0.7723 0.775 0.7727
0.6794 3.0 15 0.6236 0.6818 0.6645 0.7292 0.6818
0.5818 4.0 20 0.6672 0.6364 0.5810 0.7895 0.6364
0.5818 5.0 25 0.5214 0.7727 0.7723 0.775 0.7727
0.49 6.0 30 0.5402 0.7273 0.7273 0.7273 0.7273
0.49 7.0 35 0.7001 0.5455 0.5089 0.5647 0.5455
0.3862 8.0 40 0.5804 0.8182 0.8167 0.8291 0.8182
0.3862 9.0 45 0.6310 0.8182 0.8167 0.8291 0.8182
0.2812 10.0 50 0.7381 0.7273 0.7273 0.7273 0.7273

Framework versions

  • Transformers 4.48.2
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0