Internal model alias name: v6-relPosAttDef-noBias-aedLoss-bhv20-11gb-f32-bs15k-accgrad1-mgpu4-pavg100-wd1e_2-lrlin1e_5_295k-featBN-speedpertV2-spm10k-bpeSample001

Last epoch (subepoch 500) greedy decoding (without LM) on Librispeech (WERs): {"dev-clean": 2.38, "dev-other": 5.67, "test-clean": 2.63, "test-other": 5.93}

(Note, together with a good LM trained on Librispeech LM text data, output/ctc_recog_ext/ctc+lm/opt-beam128-fp128-lm_n32-d1024-labelprior/recog-1stpass-res.txt: {"dev-clean": 2.04, "dev-other": 4.06, "test-clean": 2.08, "test-other": 4.36})

From https://github.com/rwth-i6/i6_experiments/blob/main/users/zeyer/experiments/exp2024_04_23_baselines/ctc.py.

Usage example: https://github.com/rwth-i6/i6_experiments/blob/main/users/zeyer/experiments/exp2024_04_23_baselines/standalone/model_2024_ctc_spm10k.py

Example:

pip install torch
pip install returnn

wget https://raw.githubusercontent.com/rwth-i6/i6_experiments/refs/heads/main/users/zeyer/experiments/exp2024_04_23_baselines/standalone/model_2024_ctc_spm10k.py
wget https://huggingface.co/rwth-i6/2024-zeyer-ctc-librispeech-spm10k/resolve/main/data/epoch.500.pt
wget https://huggingface.co/rwth-i6/2024-zeyer-ctc-librispeech-spm10k/resolve/main/deps/spm.vocab

python model_2024_ctc_spm10k.py example_audio.ogg

This Sisyphus config code snippet was used to setup the Sisyphus training job:

    # v6-relPosAttDef-noBias-aedLoss-bhv20-11gb-f32-bs15k-accgrad1-mgpu4-pavg100-wd1e_2-lrlin1e_5_295k-featBN-speedpertV2-spm10k-bpeSample001
    # noBias. (Baseline: 5.77)
    train_exp(  # 5.65 (!!!)
        "v6-relPosAttDef-noBias-aedLoss-bhv20-11gb-f32-bs15k-accgrad1-mgpu4-pavg100-wd1e_2"
        "-lrlin1e_5_295k-featBN-speedpertV2-spm10k-bpeSample001",
        config_11gb_v6_f32_accgrad1_mgpu4_pavg100_wd1e_4,
        model_config={
            "enc_conformer_layer": rf.build_dict(
                rf.encoder.conformer.ConformerEncoderLayer,
                ff=rf.build_dict(
                    rf.encoder.conformer.ConformerPositionwiseFeedForward,
                    activation=rf.build_dict(rf.relu_square),
                    with_bias=False,
                ),
                num_heads=8,
            ),
            "feature_batch_norm": True,
        },
        config_updates={
            **_get_cfg_lrlin_oclr_by_bs_nep(15_000, 500),
            "optimizer.weight_decay": 1e-2,
            "__train_audio_preprocess": speed_pert_librosa_config,
            "speed_pert_discrete_values": [0.7, 0.8, 0.9, 1.0, 1.1],
            "aux_attention_decoder": rf.build_dict(TransformerDecoder, num_layers=6),  # purely used for training
        },
        vocab="spm10k",
        train_vocab_opts={"other_opts": {"class": "SamplingBytePairEncoding", "breadth_prob": 0.01}},
    )

I uploaded the info and output files from the Sisyphus RETURNN training job to trainjob, except of the model checkpoint, which I uploaded to data.

From the train job info file, I was checking dependencies. Specifically, there is the SPM vocab. I uploaded those to deps.

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Dataset used to train rwth-i6/2024-zeyer-ctc-librispeech-spm10k