lilt-en-funsd

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5924
  • Answer: {'precision': 0.8748538011695907, 'recall': 0.9155446756425949, 'f1': 0.8947368421052633, 'number': 817}
  • Header: {'precision': 0.64, 'recall': 0.5378151260504201, 'f1': 0.5844748858447488, 'number': 119}
  • Question: {'precision': 0.8945487042001787, 'recall': 0.9294336118848654, 'f1': 0.9116575591985429, 'number': 1077}
  • Overall Precision: 0.8742
  • Overall Recall: 0.9006
  • Overall F1: 0.8872
  • Overall Accuracy: 0.8193

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • training_steps: 2500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
0.3657 10.5263 200 0.9521 {'precision': 0.8126361655773421, 'recall': 0.9130966952264382, 'f1': 0.859942363112392, 'number': 817} {'precision': 0.5252525252525253, 'recall': 0.4369747899159664, 'f1': 0.47706422018348627, 'number': 119} {'precision': 0.8796046720575023, 'recall': 0.9090064995357474, 'f1': 0.8940639269406392, 'number': 1077} 0.8343 0.8828 0.8578 0.8059
0.0448 21.0526 400 1.2063 {'precision': 0.8845686512758202, 'recall': 0.8910648714810282, 'f1': 0.8878048780487805, 'number': 817} {'precision': 0.5034965034965035, 'recall': 0.6050420168067226, 'f1': 0.549618320610687, 'number': 119} {'precision': 0.8940092165898618, 'recall': 0.9006499535747446, 'f1': 0.8973172987974098, 'number': 1077} 0.8630 0.8793 0.8711 0.8133
0.0135 31.5789 600 1.3466 {'precision': 0.8726190476190476, 'recall': 0.8971848225214198, 'f1': 0.8847314423657212, 'number': 817} {'precision': 0.4900662251655629, 'recall': 0.6218487394957983, 'f1': 0.5481481481481482, 'number': 119} {'precision': 0.8789808917197452, 'recall': 0.8969359331476323, 'f1': 0.8878676470588236, 'number': 1077} 0.8483 0.8808 0.8642 0.8083
0.0069 42.1053 800 1.3562 {'precision': 0.8235294117647058, 'recall': 0.9082007343941249, 'f1': 0.8637951105937136, 'number': 817} {'precision': 0.6413043478260869, 'recall': 0.4957983193277311, 'f1': 0.5592417061611374, 'number': 119} {'precision': 0.8723981900452489, 'recall': 0.8950789229340761, 'f1': 0.8835930339138405, 'number': 1077} 0.8413 0.8768 0.8587 0.8063
0.0058 52.6316 1000 1.4131 {'precision': 0.8688524590163934, 'recall': 0.9082007343941249, 'f1': 0.8880909634949131, 'number': 817} {'precision': 0.6310679611650486, 'recall': 0.5462184873949579, 'f1': 0.5855855855855856, 'number': 119} {'precision': 0.8767605633802817, 'recall': 0.924791086350975, 'f1': 0.9001355625847266, 'number': 1077} 0.8614 0.8957 0.8782 0.8110
0.0034 63.1579 1200 1.4398 {'precision': 0.867699642431466, 'recall': 0.8910648714810282, 'f1': 0.8792270531400967, 'number': 817} {'precision': 0.6288659793814433, 'recall': 0.5126050420168067, 'f1': 0.5648148148148148, 'number': 119} {'precision': 0.8971533516988063, 'recall': 0.9071494893221913, 'f1': 0.9021237303785781, 'number': 1077} 0.8721 0.8773 0.8747 0.8054
0.0016 73.6842 1400 1.6692 {'precision': 0.8520231213872832, 'recall': 0.9020807833537332, 'f1': 0.8763376932223542, 'number': 817} {'precision': 0.6039603960396039, 'recall': 0.5126050420168067, 'f1': 0.5545454545454545, 'number': 119} {'precision': 0.9039923954372624, 'recall': 0.883008356545961, 'f1': 0.8933771723813998, 'number': 1077} 0.8667 0.8689 0.8678 0.7919
0.001 84.2105 1600 1.6412 {'precision': 0.846927374301676, 'recall': 0.9277845777233782, 'f1': 0.8855140186915887, 'number': 817} {'precision': 0.6095238095238096, 'recall': 0.5378151260504201, 'f1': 0.5714285714285715, 'number': 119} {'precision': 0.8877828054298642, 'recall': 0.9108635097493036, 'f1': 0.8991750687442712, 'number': 1077} 0.8565 0.8957 0.8757 0.7982
0.0006 94.7368 1800 1.5924 {'precision': 0.8748538011695907, 'recall': 0.9155446756425949, 'f1': 0.8947368421052633, 'number': 817} {'precision': 0.64, 'recall': 0.5378151260504201, 'f1': 0.5844748858447488, 'number': 119} {'precision': 0.8945487042001787, 'recall': 0.9294336118848654, 'f1': 0.9116575591985429, 'number': 1077} 0.8742 0.9006 0.8872 0.8193
0.0004 105.2632 2000 1.5639 {'precision': 0.8710433763188745, 'recall': 0.9094247246022031, 'f1': 0.8898203592814371, 'number': 817} {'precision': 0.6274509803921569, 'recall': 0.5378151260504201, 'f1': 0.579185520361991, 'number': 119} {'precision': 0.8928892889288929, 'recall': 0.9210770659238626, 'f1': 0.9067641681901281, 'number': 1077} 0.8708 0.8937 0.8821 0.8218
0.0002 115.7895 2200 1.5740 {'precision': 0.8684516880093132, 'recall': 0.9130966952264382, 'f1': 0.8902147971360381, 'number': 817} {'precision': 0.65, 'recall': 0.5462184873949579, 'f1': 0.593607305936073, 'number': 119} {'precision': 0.8928247048138056, 'recall': 0.9127205199628597, 'f1': 0.9026629935720845, 'number': 1077} 0.8709 0.8912 0.8809 0.8162
0.0002 126.3158 2400 1.5739 {'precision': 0.8710433763188745, 'recall': 0.9094247246022031, 'f1': 0.8898203592814371, 'number': 817} {'precision': 0.6336633663366337, 'recall': 0.5378151260504201, 'f1': 0.5818181818181819, 'number': 119} {'precision': 0.8975521305530372, 'recall': 0.9192200557103064, 'f1': 0.9082568807339448, 'number': 1077} 0.8736 0.8927 0.8830 0.8177

Framework versions

  • Transformers 4.48.0
  • Pytorch 2.5.1+cpu
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
11
Safetensors
Model size
130M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for rushabhGod/lilt-en-funsd

Finetuned
(47)
this model