rbc33's picture
rbc33/model-test
a1abda6 verified
metadata
library_name: transformers
license: apache-2.0
base_model: bert-base-uncased
tags:
  - generated_from_trainer
datasets:
  - sem_eval_2018_task_1
metrics:
  - f1
  - accuracy
model-index:
  - name: bert-finetuned-sem_eval-english
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: sem_eval_2018_task_1
          type: sem_eval_2018_task_1
          config: subtask5.english
          split: validation
          args: subtask5.english
        metrics:
          - name: F1
            type: f1
            value: 0.6578306735190695
          - name: Accuracy
            type: accuracy
            value: 0.24830699774266365

bert-finetuned-sem_eval-english

This model is a fine-tuned version of bert-base-uncased on the sem_eval_2018_task_1 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3283
  • F1: 0.6578
  • Roc Auc: 0.7603
  • Accuracy: 0.2483

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
0.408 1.0 855 0.3283 0.6578 0.7603 0.2483

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu124
  • Datasets 2.15.0
  • Tokenizers 0.20.3