Yolo-NAS: Optimized for Mobile Deployment

Real-time object detection optimized for mobile and edge

YoloNAS is a machine learning model that predicts bounding boxes and classes of objects in an image.

This model is an implementation of Yolo-NAS found here.

More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Object detection
  • Model Stats:
    • Model checkpoint: YoloNAS Small
    • Input resolution: 640x640
    • Number of parameters: 12.2M
    • Model size: 46.6 MB
Model Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Precision Primary Compute Unit Target Model
Yolo-NAS Samsung Galaxy S23 Snapdragon® 8 Gen 2 TFLITE 8.961 ms 0 - 21 MB FP16 NPU --
Yolo-NAS Samsung Galaxy S23 Snapdragon® 8 Gen 2 QNN 9.594 ms 5 - 23 MB FP16 NPU --
Yolo-NAS Samsung Galaxy S23 Snapdragon® 8 Gen 2 ONNX 7.819 ms 0 - 82 MB FP16 NPU --
Yolo-NAS Samsung Galaxy S24 Snapdragon® 8 Gen 3 TFLITE 6.097 ms 0 - 38 MB FP16 NPU --
Yolo-NAS Samsung Galaxy S24 Snapdragon® 8 Gen 3 QNN 6.526 ms 5 - 36 MB FP16 NPU --
Yolo-NAS Samsung Galaxy S24 Snapdragon® 8 Gen 3 ONNX 5.351 ms 5 - 53 MB FP16 NPU --
Yolo-NAS Snapdragon 8 Elite QRD Snapdragon® 8 Elite TFLITE 6.305 ms 0 - 37 MB FP16 NPU --
Yolo-NAS Snapdragon 8 Elite QRD Snapdragon® 8 Elite QNN 6.299 ms 5 - 37 MB FP16 NPU --
Yolo-NAS Snapdragon 8 Elite QRD Snapdragon® 8 Elite ONNX 5.444 ms 7 - 46 MB FP16 NPU --
Yolo-NAS QCS8550 (Proxy) QCS8550 Proxy TFLITE 8.951 ms 0 - 22 MB FP16 NPU --
Yolo-NAS QCS8550 (Proxy) QCS8550 Proxy QNN 9.507 ms 5 - 8 MB FP16 NPU --
Yolo-NAS SA7255P ADP SA7255P QNN 223.609 ms 1 - 10 MB FP16 NPU --
Yolo-NAS SA8255 (Proxy) SA8255P Proxy TFLITE 8.938 ms 0 - 21 MB FP16 NPU --
Yolo-NAS SA8255 (Proxy) SA8255P Proxy QNN 9.472 ms 5 - 7 MB FP16 NPU --
Yolo-NAS SA8295P ADP SA8295P TFLITE 13.91 ms 0 - 35 MB FP16 NPU --
Yolo-NAS SA8295P ADP SA8295P QNN 14.561 ms 0 - 14 MB FP16 NPU --
Yolo-NAS SA8650 (Proxy) SA8650P Proxy TFLITE 8.953 ms 0 - 20 MB FP16 NPU --
Yolo-NAS SA8650 (Proxy) SA8650P Proxy QNN 9.369 ms 5 - 7 MB FP16 NPU --
Yolo-NAS SA8775P ADP SA8775P TFLITE 15.522 ms 0 - 32 MB FP16 NPU --
Yolo-NAS SA8775P ADP SA8775P QNN 16.293 ms 1 - 11 MB FP16 NPU --
Yolo-NAS QCS8450 (Proxy) QCS8450 Proxy TFLITE 12.218 ms 0 - 37 MB FP16 NPU --
Yolo-NAS QCS8450 (Proxy) QCS8450 Proxy QNN 12.833 ms 5 - 37 MB FP16 NPU --
Yolo-NAS Snapdragon X Elite CRD Snapdragon® X Elite QNN 10.306 ms 5 - 5 MB FP16 NPU --
Yolo-NAS Snapdragon X Elite CRD Snapdragon® X Elite ONNX 8.473 ms 22 - 22 MB FP16 NPU --

License

  • The license for the original implementation of Yolo-NAS can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community

Usage and Limitations

Model may not be used for or in connection with any of the following applications:

  • Accessing essential private and public services and benefits;
  • Administration of justice and democratic processes;
  • Assessing or recognizing the emotional state of a person;
  • Biometric and biometrics-based systems, including categorization of persons based on sensitive characteristics;
  • Education and vocational training;
  • Employment and workers management;
  • Exploitation of the vulnerabilities of persons resulting in harmful behavior;
  • General purpose social scoring;
  • Law enforcement;
  • Management and operation of critical infrastructure;
  • Migration, asylum and border control management;
  • Predictive policing;
  • Real-time remote biometric identification in public spaces;
  • Recommender systems of social media platforms;
  • Scraping of facial images (from the internet or otherwise); and/or
  • Subliminal manipulation
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the HF Inference API does not support pytorch models with pipeline type object-detection