SetFit with sentence-transformers/all-mpnet-base-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/all-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/all-mpnet-base-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 384 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
0 |
|
1 |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.8058 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("pEpOo/catastrophy6")
# Run inference
preds = model("SHOUOUT TO @kasad1lla CAUSE HER VOCALS ARE BLAZING HOT LIKE THE WEATHER SHES IN")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 14.7175 | 54 |
Label | Training Sample Count |
---|---|
0 | 1335 |
1 | 948 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0094 | 1 | 0.0044 | - |
0.4717 | 50 | 0.005 | - |
0.9434 | 100 | 0.0007 | - |
0.0002 | 1 | 0.4675 | - |
0.0088 | 50 | 0.3358 | - |
0.0175 | 100 | 0.2516 | - |
0.0263 | 150 | 0.2158 | - |
0.0350 | 200 | 0.1924 | - |
0.0438 | 250 | 0.1907 | - |
0.0526 | 300 | 0.2166 | - |
0.0613 | 350 | 0.2243 | - |
0.0701 | 400 | 0.0644 | - |
0.0788 | 450 | 0.1924 | - |
0.0876 | 500 | 0.166 | - |
0.0964 | 550 | 0.2117 | - |
0.1051 | 600 | 0.0793 | - |
0.1139 | 650 | 0.0808 | - |
0.1226 | 700 | 0.1183 | - |
0.1314 | 750 | 0.0808 | - |
0.1402 | 800 | 0.0194 | - |
0.1489 | 850 | 0.0699 | - |
0.1577 | 900 | 0.0042 | - |
0.1664 | 950 | 0.0048 | - |
0.1752 | 1000 | 0.1886 | - |
0.1840 | 1050 | 0.0008 | - |
0.1927 | 1100 | 0.0033 | - |
0.2015 | 1150 | 0.0361 | - |
0.2102 | 1200 | 0.12 | - |
0.2190 | 1250 | 0.0035 | - |
0.2278 | 1300 | 0.0002 | - |
0.2365 | 1350 | 0.0479 | - |
0.2453 | 1400 | 0.0568 | - |
0.2540 | 1450 | 0.0004 | - |
0.2628 | 1500 | 0.0002 | - |
0.2715 | 1550 | 0.0013 | - |
0.2803 | 1600 | 0.0005 | - |
0.2891 | 1650 | 0.0014 | - |
0.2978 | 1700 | 0.0004 | - |
0.3066 | 1750 | 0.0008 | - |
0.3153 | 1800 | 0.0616 | - |
0.3241 | 1850 | 0.0003 | - |
0.3329 | 1900 | 0.001 | - |
0.3416 | 1950 | 0.0581 | - |
0.3504 | 2000 | 0.0657 | - |
0.3591 | 2050 | 0.0584 | - |
0.3679 | 2100 | 0.0339 | - |
0.3767 | 2150 | 0.0081 | - |
0.3854 | 2200 | 0.0001 | - |
0.3942 | 2250 | 0.0009 | - |
0.4029 | 2300 | 0.0018 | - |
0.4117 | 2350 | 0.0001 | - |
0.4205 | 2400 | 0.0012 | - |
0.4292 | 2450 | 0.0001 | - |
0.4380 | 2500 | 0.0003 | - |
0.4467 | 2550 | 0.0035 | - |
0.4555 | 2600 | 0.0172 | - |
0.4643 | 2650 | 0.0383 | - |
0.4730 | 2700 | 0.0222 | - |
0.4818 | 2750 | 0.0013 | - |
0.4905 | 2800 | 0.0007 | - |
0.4993 | 2850 | 0.0003 | - |
0.5081 | 2900 | 0.1247 | - |
0.5168 | 2950 | 0.023 | - |
0.5256 | 3000 | 0.0002 | - |
0.5343 | 3050 | 0.0002 | - |
0.5431 | 3100 | 0.0666 | - |
0.5519 | 3150 | 0.0002 | - |
0.5606 | 3200 | 0.0003 | - |
0.5694 | 3250 | 0.0012 | - |
0.5781 | 3300 | 0.0085 | - |
0.5869 | 3350 | 0.0003 | - |
0.5957 | 3400 | 0.0002 | - |
0.6044 | 3450 | 0.0004 | - |
0.6132 | 3500 | 0.013 | - |
0.6219 | 3550 | 0.0089 | - |
0.6307 | 3600 | 0.0001 | - |
0.6395 | 3650 | 0.0002 | - |
0.6482 | 3700 | 0.0039 | - |
0.6570 | 3750 | 0.0031 | - |
0.6657 | 3800 | 0.0009 | - |
0.6745 | 3850 | 0.0002 | - |
0.6833 | 3900 | 0.0002 | - |
0.6920 | 3950 | 0.0001 | - |
0.7008 | 4000 | 0.0 | - |
0.7095 | 4050 | 0.0212 | - |
0.7183 | 4100 | 0.0001 | - |
0.7270 | 4150 | 0.0586 | - |
0.7358 | 4200 | 0.0001 | - |
0.7446 | 4250 | 0.0003 | - |
0.7533 | 4300 | 0.0126 | - |
0.7621 | 4350 | 0.0001 | - |
0.7708 | 4400 | 0.0001 | - |
0.7796 | 4450 | 0.0001 | - |
0.7884 | 4500 | 0.0 | - |
0.7971 | 4550 | 0.0002 | - |
0.8059 | 4600 | 0.0002 | - |
0.8146 | 4650 | 0.0001 | - |
0.8234 | 4700 | 0.0035 | - |
0.8322 | 4750 | 0.0002 | - |
0.8409 | 4800 | 0.0002 | - |
0.8497 | 4850 | 0.0001 | - |
0.8584 | 4900 | 0.0001 | - |
0.8672 | 4950 | 0.0001 | - |
0.8760 | 5000 | 0.0003 | - |
0.8847 | 5050 | 0.0 | - |
0.8935 | 5100 | 0.0041 | - |
0.9022 | 5150 | 0.0001 | - |
0.9110 | 5200 | 0.0001 | - |
0.9198 | 5250 | 0.0001 | - |
0.9285 | 5300 | 0.0001 | - |
0.9373 | 5350 | 0.0001 | - |
0.9460 | 5400 | 0.0001 | - |
0.9548 | 5450 | 0.0001 | - |
0.9636 | 5500 | 0.0001 | - |
0.9723 | 5550 | 0.0001 | - |
0.9811 | 5600 | 0.0002 | - |
0.9898 | 5650 | 0.0271 | - |
0.9986 | 5700 | 0.0 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.1
- Sentence Transformers: 2.2.2
- Transformers: 4.35.2
- PyTorch: 2.1.0+cu121
- Datasets: 2.15.0
- Tokenizers: 0.15.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 8
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for pEpOo/catastrophy6
Base model
sentence-transformers/all-mpnet-base-v2