I Hackathon Somos NLP: PLN en Español

non-profit

AI & ML interests

Hackathon de PLN en español open-source y enfocado a los Objetivos de Desarrollo Sostenible de la ONU. Organizado por Somos NLP y patrocinado por Platzi, Paperspace y Hugging Face.

Recent Activity

somosnlp-hackathon-2022's activity

albertvillanova 
posted an update 2 days ago
view post
Post
1727
🚀 Introducing @huggingface Open Deep-Research💥

In just 24 hours, we built an open-source agent that:
✅ Autonomously browse the web
✅ Search, scroll & extract info
✅ Download & manipulate files
✅ Run calculations on data

55% on GAIA validation set! Help us improve it!💡
https://huggingface.co/blog/open-deep-research
  • 1 reply
·
albertvillanova 
posted an update about 1 month ago
albertvillanova 
posted an update 3 months ago
view post
Post
1766
🚨 How green is your model? 🌱 Introducing a new feature in the Comparator tool: Environmental Impact for responsible #LLM research!
👉 open-llm-leaderboard/comparator
Now, you can not only compare models by performance, but also by their environmental footprint!

🌍 The Comparator calculates CO₂ emissions during evaluation and shows key model characteristics: evaluation score, number of parameters, architecture, precision, type... 🛠️
Make informed decisions about your model's impact on the planet and join the movement towards greener AI!
albertvillanova 
posted an update 3 months ago
view post
Post
1576
🚀 New feature of the Comparator of the 🤗 Open LLM Leaderboard: now compare models with their base versions & derivatives (finetunes, adapters, etc.). Perfect for tracking how adjustments affect performance & seeing innovations in action. Dive deeper into the leaderboard!

🛠️ Here's how to use it:
1. Select your model from the leaderboard.
2. Load its model tree.
3. Choose any base & derived models (adapters, finetunes, merges, quantizations) for comparison.
4. Press Load.
See side-by-side performance metrics instantly!

Ready to dive in? 🏆 Try the 🤗 Open LLM Leaderboard Comparator now! See how models stack up against their base versions and derivatives to understand fine-tuning and other adjustments. Easier model analysis for better insights! Check it out here: open-llm-leaderboard/comparator 🌐
albertvillanova 
posted an update 3 months ago
view post
Post
3153
🚀 Exciting update! You can now compare multiple models side-by-side with the Hugging Face Open LLM Comparator! 📊

open-llm-leaderboard/comparator

Dive into multi-model evaluations, pinpoint the best model for your needs, and explore insights across top open LLMs all in one place. Ready to level up your model comparison game?
albertvillanova 
posted an update 4 months ago
view post
Post
1239
🚨 Instruct-tuning impacts models differently across families! Qwen2.5-72B-Instruct excels on IFEval but struggles with MATH-Hard, while Llama-3.1-70B-Instruct avoids MATH performance loss! Why? Can they follow the format in examples? 📊 Compare models: open-llm-leaderboard/comparator
albertvillanova 
posted an update 4 months ago
view post
Post
1939
Finding the Best SmolLM for Your Project

Need an LLM assistant but unsure which hashtag#smolLM to run locally? With so many models available, how can you decide which one suits your needs best? 🤔

If the model you’re interested in is evaluated on the Hugging Face Open LLM Leaderboard, there’s an easy way to compare them: use the model Comparator tool: open-llm-leaderboard/comparator
Let’s walk through an example👇

Let’s compare two solid options:
- Qwen2.5-1.5B-Instruct from Alibaba Cloud Qwen (1.5B params)
- gemma-2-2b-it from Google (2.5B params)

For an assistant, you want a model that’s great at instruction following. So, how do these two models stack up on the IFEval task?

What about other evaluations?
Both models are close in performance on many other tasks, showing minimal differences. Surprisingly, the 1.5B Qwen model performs just as well as the 2.5B Gemma in many areas, even though it's smaller in size! 📊

This is a great example of how parameter size isn’t everything. With efficient design and training, a smaller model like Qwen2.5-1.5B can match or even surpass larger models in certain tasks.

Looking for other comparisons? Drop your model suggestions below! 👇
albertvillanova 
posted an update 4 months ago
view post
Post
1973
🚨 We’ve just released a new tool to compare the performance of models in the 🤗 Open LLM Leaderboard: the Comparator 🎉
open-llm-leaderboard/comparator

Want to see how two different versions of LLaMA stack up? Let’s walk through a step-by-step comparison of LLaMA-3.1 and LLaMA-3.2. 🦙🧵👇

1/ Load the Models' Results
- Go to the 🤗 Open LLM Leaderboard Comparator: open-llm-leaderboard/comparator
- Search for "LLaMA-3.1" and "LLaMA-3.2" in the model dropdowns.
- Press the Load button. Ready to dive into the results!

2/ Compare Metric Results in the Results Tab 📊
- Head over to the Results tab.
- Here, you’ll see the performance metrics for each model, beautifully color-coded using a gradient to highlight performance differences: greener is better! 🌟
- Want to focus on a specific task? Use the Task filter to hone in on comparisons for tasks like BBH or MMLU-Pro.

3/ Check Config Alignment in the Configs Tab ⚙️
- To ensure you’re comparing apples to apples, head to the Configs tab.
- Review both models’ evaluation configurations, such as metrics, datasets, prompts, few-shot configs...
- If something looks off, it’s good to know before drawing conclusions! ✅

4/ Compare Predictions by Sample in the Details Tab 🔍
- Curious about how each model responds to specific inputs? The Details tab is your go-to!
- Select a Task (e.g., MuSR) and then a Subtask (e.g., Murder Mystery) and then press the Load Details button.
- Check out the side-by-side predictions and dive into the nuances of each model’s outputs.

5/ With this tool, it’s never been easier to explore how small changes between model versions affect performance on a wide range of tasks. Whether you’re a researcher or enthusiast, you can instantly visualize improvements and dive into detailed comparisons.

🚀 Try the 🤗 Open LLM Leaderboard Comparator now and take your model evaluations to the next level!
albertvillanova 
posted an update 5 months ago
mrm8488 
posted an update 7 months ago
view post
Post
5107
🚨Exciting news for the Multilingual Synthetic Data Community!🚨

I’ve taken inspiration from the MAGPIE paper on Llama-3-8B-instruct and extended its capabilities. Here’s what’s new!

🗞 The MAGPIE paper showcased that if you use the instruction-tuned version (Llama-3-8B-instruct) to generate synthetic instructions and then fine-tune the base version (Llama-3-8B) on this dataset, you can improve even the it-tuned version

🤔 While reading a script by Sebastian Raschka, PhD, I wondered: Could these advancements be replicated in other languages? Specifically, could they benefit non-English datasets?

🎉 And the answer is YES! At least for Spanish. I've successfully adapted the techniques for Spanish, proving the model's flexibility and multilingual capabilities.

👩‍💻 To make this accessible, I created a basic script (heavily inspired by the Sebastian Raschka one) that allows you to generate similar datasets using ollama models (initially phi and llama3) automatically and upload it to the Hugging Face Hub!
[Script](https://gist.github.com/mrm8488/4650a5e3cc45523798a527a3446eb312)


🔍 Explore the datasets 📚 generated using our new script!

- [Llama-3-8B](https://huggingface.co/datasets/mrm8488/dataset_llama3_5000_samples_es_4231_filtered)
- [Phi-3-medium](https://huggingface.co/datasets/mrm8488/dataset_phi3-medium_5000_samples_es_3906_filtered)
- [Phi-3-mini](https://huggingface.co/datasets/mrm8488/dataset_phi3_5000_samples_es_3282_filtered)


Note: These datasets have basic filtering. Apply additional quality filters before using them to fine-tune large language models.

Inspiration and base script:
https://github.com/rasbt/LLMs-from-scratch/blob/main/ch07/05_dataset-generation/llama3-ollama.ipynb
https://www.linkedin.com/feed/update/urn:li:activity:7210982019751661568/
·
albertvillanova 
posted an update 9 months ago
view post
Post
2712
Easily convert your script-based datasets to Parquet and explore them in the dataset viewer. 🌟

🛠️ Use @huggingface Datasets CLI:
$ 𝚍𝚊𝚝𝚊𝚜𝚎𝚝𝚜-𝚌𝚕𝚒 𝚌𝚘𝚗𝚟𝚎𝚛𝚝_𝚝𝚘_𝚙𝚊𝚛𝚚𝚞𝚎𝚝 𝚄𝚂𝙴𝚁𝙽𝙰𝙼𝙴/𝙳𝙰𝚃𝙰𝚂𝙴𝚃_𝙽𝙰𝙼𝙴

Learn more: https://huggingface.co/docs/datasets/main/en/cli#convert-to-parquet
#Data #AI
mrm8488 
posted an update 9 months ago
view post
Post
5971
Working on a concept GPT-2 (small) that uses KANs instead of MLPs.
The ckpt and training code will be soon on the hub.
·
albertvillanova 
posted an update 9 months ago
view post
Post
4064
Recently, the Hugging Face 🤗 datasets team met with the Language Technologies team led by Marta Villegas ( @mvillegas ) at Barcelona Supercomputing Center @BSC-LT . Eager to collaborate to promote AI across Catalan, Spanish, Basque, and Galician languages and share open-source datasets/models. 🤝 #AI #LanguageTech #OpenSource
  • 1 reply
·
albertvillanova 
posted an update 9 months ago
view post
Post
1667
🚀 We recently released datasets 2.19.0! 📦

🔥 What's New:
- Polars integration 🐻‍❄️
- fsspec support for conversion to JSON, CSV, and Parquet
- Mode parameter for Image feature
- CLI function to convert script-datasets to Parquet
- Dataset.take and Dataset.skip

Plus, a bunch of general improvements & bug fixes!

Check out the release notes: https://github.com/huggingface/datasets/releases/tag/2.19.0

Upgrade now and power up your data workflows! 💥
  • 2 replies
·
pcuenq 
posted an update 9 months ago
view post
Post
5110
OpenELM in Core ML

Apple recently released a set of efficient LLMs in sizes varying between 270M and 3B parameters. Their quality, according to benchmarks, is similar to OLMo models of comparable size, but they required half the pre-training tokens because they use layer-wise scaling, where the number of attention heads increases in deeper layers.

I converted these models to Core ML, for use on Apple Silicon, using this script: https://gist.github.com/pcuenca/23cd08443460bc90854e2a6f0f575084. The converted models were uploaded to this community in the Hub for anyone that wants to integrate inside their apps: corenet-community/openelm-core-ml-6630c6b19268a5d878cfd194

The conversion was done with the following parameters:
- Precision: float32.
- Sequence length: fixed to 128.

With swift-transformers (https://github.com/huggingface/swift-transformers), I'm getting about 56 tok/s with the 270M on my M1 Max, and 6.5 with the largest 3B model. These speeds could be improved by converting to float16. However, there's some precision loss somewhere and generation doesn't work in float16 mode yet. I'm looking into this and will keep you posted! Or take a look at this issue if you'd like to help: https://github.com/huggingface/swift-transformers/issues/95

I'm also looking at optimizing inference using an experimental kv cache in swift-transformers. It's a bit tricky because the layers have varying number of attention heads, but I'm curious to see how much this feature can accelerate performance in this model family :)

Regarding the instruct fine-tuned models, I don't know the chat template that was used. The models use the Llama 2 tokenizer, but the Llama 2 chat template, or the default Alignment Handbook one that was used to train, are not recognized. Any ideas on this welcome!
·