Data Agents

Enterprise
community
Activity Feed

AI & ML interests

None defined yet.

Recent Activity

data-agents's activity

m-ricย 
posted an update 2 days ago
view post
Post
5530
Introducing ๐—ผ๐—ฝ๐—ฒ๐—ป ๐——๐—ฒ๐—ฒ๐—ฝ-๐—ฅ๐—ฒ๐˜€๐—ฒ๐—ฎ๐—ฟ๐—ฐ๐—ต by Hugging Face! ๐Ÿ’ฅ

OpenAI's latest agentic app Deep Research seems really good... But it's closed, as usual.

โฑ๏ธ So with a team of cracked colleagues, we set ourselves a 24hours deadline to replicate and open-source Deep Research! โฑ๏ธ

โžก๏ธ We built open-Deep-Research, an entirely open agent that can: navigate the web autonomously, scroll and search through pages, download and manipulate files, run calculation on data...

We aimed for the best performance: are the agent's answers really rigorous?

On GAIA benchmark, Deep Research had 67% accuracy on the validation set.
โžก๏ธ open Deep Research is at 55% (powered by o1), it is:
- the best pass@1 solution submitted
- the best open solution ๐Ÿ’ช๐Ÿ’ช

And it's only getting started ! Please jump in, drop PRs, and let's bring it to the top !

Read the blog post ๐Ÿ‘‰ https://huggingface.co/blog/open-deep-research
m-ricย 
posted an update 6 days ago
view post
Post
2433
Now you can launch a code agent directly from your terminal!
โœจ ๐šœ๐š–๐š˜๐š•๐šŠ๐š๐šŽ๐š—๐š "๐šˆ๐š˜๐šž๐š› ๐š๐šŠ๐šœ๐š”" directly launches a CodeAgent
โ–ถ๏ธ This also works with web agents (replace ๐šœ๐š–๐š˜๐š•๐šŠ๐š๐šŽ๐š—๐š with ๐š ๐šŽ๐š‹๐šŠ๐š๐šŽ๐š—๐š) thanks to @merve !

๐Ÿ’พ Another treat from smolagents release 1.7.0:
Now agents have a memory mechanism, enabling many possibilities like replaying the last run with ๐šŠ๐š๐šŽ๐š—๐š.๐š›๐šŽ๐š™๐š•๐šŠ๐šข(), thank you @clefourrier !

Check the release notes here ๐Ÿ‘‰ https://github.com/huggingface/smolagents/releases/tag/v1.7.0
m-ricย 
posted an update 9 days ago
view post
Post
3549
๐—ง๐—ต๐—ฒ ๐—›๐˜‚๐—ฏ ๐˜„๐—ฒ๐—น๐—ฐ๐—ผ๐—บ๐—ฒ๐˜€ ๐—ฒ๐˜…๐˜๐—ฒ๐—ฟ๐—ป๐—ฎ๐—น ๐—ถ๐—ป๐—ณ๐—ฒ๐—ฟ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฝ๐—ฟ๐—ผ๐˜ƒ๐—ถ๐—ฑ๐—ฒ๐—ฟ๐˜€!

โœ… Hosting our own inference was not enough: now the Hub 4 new inference providers: fal, Replicate, SambaNova Systems, & Together AI.

Check model cards on the Hub: you can now, in 1 click, use inference from various providers (cf video demo)

Their inference can also be used through our Inference API client. There, you can use either your custom provider key, or your HF token, then billing will be handled directly on your HF account, as a way to centralize all expenses.

๐Ÿ’ธ Also, PRO users get 2$ inference credits per month!

Read more in the announcement ๐Ÿ‘‰ https://huggingface.co/blog/inference-providers
  • 1 reply
ยท
lewtunย 
posted an update 12 days ago
view post
Post
9876
We are reproducing the full DeepSeek R1 data and training pipeline so everybody can use their recipe. Instead of doing it in secret we can do it together in the open!

๐Ÿงช Step 1: replicate the R1-Distill models by distilling a high-quality reasoning corpus from DeepSeek-R1.

๐Ÿง  Step 2: replicate the pure RL pipeline that DeepSeek used to create R1-Zero. This will involve curating new, large-scale datasets for math, reasoning, and code.

๐Ÿ”ฅ Step 3: show we can go from base model -> SFT -> RL via multi-stage training.

Follow along: https://github.com/huggingface/open-r1
ยท
m-ricย 
posted an update 13 days ago
view post
Post
2837
Today we make the biggest release in smolagents so far: ๐˜„๐—ฒ ๐—ฒ๐—ป๐—ฎ๐—ฏ๐—น๐—ฒ ๐˜ƒ๐—ถ๐˜€๐—ถ๐—ผ๐—ป ๐—บ๐—ผ๐—ฑ๐—ฒ๐—น๐˜€, ๐˜„๐—ต๐—ถ๐—ฐ๐—ต ๐—ฎ๐—น๐—น๐—ผ๐˜„๐˜€ ๐˜๐—ผ ๐—ฏ๐˜‚๐—ถ๐—น๐—ฑ ๐—ฝ๐—ผ๐˜„๐—ฒ๐—ฟ๐—ณ๐˜‚๐—น ๐˜„๐—ฒ๐—ฏ ๐—ฏ๐—ฟ๐—ผ๐˜„๐˜€๐—ถ๐—ป๐—ด ๐—ฎ๐—ด๐—ฒ๐—ป๐˜๐˜€! ๐Ÿฅณ

Our agents can now casually open up a web browser, and navigate on it by scrolling, clicking elements on the webpage, going back, just like a user would.

The demo below shows Claude-3.5-Sonnet browsing GitHub for task: "Find how many commits the author of the current top trending repo did over last year."
Hi @mlabonne !

Go try it out, it's the most cracked agentic stuff I've seen in a while ๐Ÿคฏ (well, along with OpenAI's Operator who beat us by one day)

For more detail, read our announcement blog ๐Ÿ‘‰ https://huggingface.co/blog/smolagents-can-see
The code for the web browser example is here ๐Ÿ‘‰ https://github.com/huggingface/smolagents/blob/main/examples/vlm_web_browser.py
ยท
m-ricย 
posted an update 21 days ago
view post
Post
1226
๐— ๐—ถ๐—ป๐—ถ๐— ๐—ฎ๐˜…'๐˜€ ๐—ป๐—ฒ๐˜„ ๐— ๐—ผ๐—˜ ๐—Ÿ๐—Ÿ๐—  ๐—ฟ๐—ฒ๐—ฎ๐—ฐ๐—ต๐—ฒ๐˜€ ๐—–๐—น๐—ฎ๐˜‚๐—ฑ๐—ฒ-๐—ฆ๐—ผ๐—ป๐—ป๐—ฒ๐˜ ๐—น๐—ฒ๐˜ƒ๐—ฒ๐—น ๐˜„๐—ถ๐˜๐—ต ๐Ÿฐ๐—  ๐˜๐—ผ๐—ธ๐—ฒ๐—ป๐˜€ ๐—ฐ๐—ผ๐—ป๐˜๐—ฒ๐˜…๐˜ ๐—น๐—ฒ๐—ป๐—ด๐˜๐—ต ๐Ÿ’ฅ

This work from Chinese startup @MiniMax-AI introduces a novel architecture that achieves state-of-the-art performance while handling context windows up to 4 million tokens - roughly 20x longer than current models. The key was combining lightning attention, mixture of experts (MoE), and a careful hybrid approach.

๐—ž๐—ฒ๐˜† ๐—ถ๐—ป๐˜€๐—ถ๐—ด๐—ต๐˜๐˜€:

๐Ÿ—๏ธ MoE with novel hybrid attention:
โ€ฃ Mixture of Experts with 456B total parameters (45.9B activated per token)
โ€ฃ Combines Lightning attention (linear complexity) for most layers and traditional softmax attention every 8 layers

๐Ÿ† Outperforms leading models across benchmarks while offering vastly longer context:
โ€ฃ Competitive with GPT-4/Claude-3.5-Sonnet on most tasks
โ€ฃ Can efficiently handle 4M token contexts (vs 256K for most other LLMs)

๐Ÿ”ฌ Technical innovations enable efficient scaling:
โ€ฃ Novel expert parallel and tensor parallel strategies cut communication overhead in half
โ€ฃ Improved linear attention sequence parallelism, multi-level padding and other optimizations achieve 75% GPU utilization (that's really high, generally utilization is around 50%)

๐ŸŽฏ Thorough training strategy:
โ€ฃ Careful data curation and quality control by using a smaller preliminary version of their LLM as a judge!

Overall, not only is the model impressive, but the technical paper is also really interesting! ๐Ÿ“
It has lots of insights including a great comparison showing how a 2B MoE (24B total) far outperforms a 7B model for the same amount of FLOPs.

Read it in full here ๐Ÿ‘‰ MiniMax-01: Scaling Foundation Models with Lightning Attention (2501.08313)
Model here, allows commercial use <100M monthly users ๐Ÿ‘‰ MiniMaxAI/MiniMax-Text-01
m-ricย 
posted an update 22 days ago
view post
Post
2467
๐—ช๐—ฒ'๐˜ƒ๐—ฒ ๐—ท๐˜‚๐˜€๐˜ ๐—ฟ๐—ฒ๐—น๐—ฒ๐—ฎ๐˜€๐—ฒ๐—ฑ ๐˜€๐—บ๐—ผ๐—น๐—ฎ๐—ด๐—ฒ๐—ป๐˜๐˜€ ๐˜ƒ๐Ÿญ.๐Ÿฏ.๐Ÿฌ ๐Ÿš€, and it comes with a major feature: you can now log agent runs using OpenTelemetry to inspect them afterwards! ๐Ÿ“Š

This interactive format is IMO much easier to inspect big multi-step runs than endless console logs.

The setup is very easy, in a few lines of code.

Find a tutorial here ๐Ÿ‘‰ https://huggingface.co/docs/smolagents/tutorials/inspect_runs
  • 5 replies
ยท
m-ricย 
posted an update 25 days ago
view post
Post
644
๐—ข๐—ฆ-๐—š๐—ฒ๐—ป๐—ฒ๐˜€๐—ถ๐˜€: ๐—ป๐—ฒ๐˜„ ๐—ฟ๐—ฒ๐˜€๐—ฒ๐—ฎ๐—ฟ๐—ฐ๐—ต ๐—ฝ๐—ฎ๐—ฝ๐—ฒ๐—ฟ ๐—ฝ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ฒ๐˜€ ๐—ฎ ๐—ป๐—ผ๐˜ƒ๐—ฒ๐—น ๐˜๐—ฟ๐—ฎ๐—ถ๐—ป๐—ถ๐—ป๐—ด ๐—ฑ๐—ฎ๐˜๐—ฎ ๐—ด๐—ฒ๐—ป๐—ฒ๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—บ๐—ฒ๐˜๐—ต๐—ผ๐—ฑ ๐—ณ๐—ผ๐—ฟ ๐—–๐—น๐—ฎ๐˜‚๐—ฑ๐—ฒ-๐—–๐—ผ๐—บ๐—ฝ๐˜‚๐˜๐—ฒ๐—ฟ-๐—จ๐˜€๐—ฒ-๐—น๐—ถ๐—ธ๐—ฒ ๐—ฎ๐—ด๐—ฒ๐—ป๐˜๐˜€, ๐˜„๐—ถ๐˜๐—ต ๐—ถ๐—บ๐—ฝ๐—ฟ๐—ฒ๐˜€๐˜€๐—ถ๐˜ƒ๐—ฒ ๐—ฟ๐—ฒ๐˜€๐˜‚๐—น๐˜๐˜€! ๐Ÿ”ฅ

The main bottleneck in building GUI agents it to find training data.
GUI Agent trajectories are not easy to get by. Crowdsourcing trajectories, then manually annotating them, could be an option, but at scale, it's hard to do

You could use synthetic data generation (ask 1000s small existing GUI agents to solve tasks, keep only successful runs). But then it's hard to come up with many high level-tasks.

โžก๏ธ Well, a novel technique was just published that creates a new promising paradigm for synthetic data generation: Shanghai AI Lab researchers propose OS-Genesis, a novel way to create training data for GUI agents that flips the traditional approach on its head. Instead of starting with predefined tasks and having humans or machines execute them, OS-Genesis first explores the interface naturally, then derives meaningful tasks from those interactions.

๐Ÿ” Exploration-driven vs task-driven approach:
โ€ฃ Instead of starting with tasks, OS-Genesis first explores GUIs by clicking and interacting
โ€ฃ It then reverse-engineers high-level tasks from successful interaction patterns
โ€ฃ This leads to more natural and diverse training data than predefined tasks

๐ŸŽฏ Novel reward model for trajectory quality:
โ€ฃ Rather than discarding incomplete trajectories, OS-Genesis scores them based on coherence and completion
โ€ฃ This preserves valuable partial successes that would otherwise be wasted

๐Ÿ† Superior results across environments:
โ€ฃ Nearly doubles performance on AndroidWorld (9.8% โ†’ 17.4%)

By the way, this field of GUI agents is still in infancy, so you can still make a difference with "low-cost" setups: their paper gets SOTA results with only 8xA100!

Read the paper here ๐Ÿ‘‰ OS-Genesis: Automating GUI Agent Trajectory Construction via Reverse Task Synthesis (2412.19723)
m-ricย 
posted an update about 1 month ago
view post
Post
5091
Since I published it on GitHub a few days ago,
Hugging Face's new agentic library ๐˜€๐—บ๐—ผ๐—น๐—ฎ๐—ด๐—ฒ๐—ป๐˜๐˜€ has gathered nearly 4k stars ๐Ÿคฏ

โžก๏ธ But we are just getting started on agents: so we are hiring an ML Engineer to join me and double down on this effort!

The plan is to build GUI agents: agents that can act on your computer with mouse & keyboard, like Claude Computer Use.

We will make it work better, and fully open. โœจ

Sounds like something you'd like to do? Apply here ๐Ÿ‘‰ https://apply.workable.com/huggingface/j/AF1D4E3FEB/
ยท
lewtunย 
posted an update about 1 month ago
view post
Post
3806
I was initially pretty sceptical about Meta's Coconut paper [1] because the largest perf gains were reported on toy linguistic problems. However, these results on machine translation are pretty impressive!

https://x.com/casper_hansen_/status/1875872309996855343

Together with the recent PRIME method [2] for scaling RL, reasoning for open models is looking pretty exciting for 2025!

[1] Training Large Language Models to Reason in a Continuous Latent Space (2412.06769)
[2] https://huggingface.co/blog/ganqu/prime
lewtunย 
posted an update about 1 month ago
view post
Post
2266
This paper ( HuatuoGPT-o1, Towards Medical Complex Reasoning with LLMs (2412.18925)) has a really interesting recipe for inducing o1-like behaviour in Llama models:

* Iteratively sample CoTs from the model, using a mix of different search strategies. This gives you something like Stream of Search via prompting.
* Verify correctness of each CoT using GPT-4o (needed because exact match doesn't work well in medicine where there are lots of aliases)
* Use GPT-4o to reformat the concatenated CoTs into a single stream that includes smooth transitions like "hmm, wait" etc that one sees in o1
* Use the resulting data for SFT & RL
* Use sparse rewards from GPT-4o to guide RL training. They find RL gives an average ~3 point boost across medical benchmarks and SFT on this data already gives a strong improvement.

Applying this strategy to other domains could be quite promising, provided the training data can be formulated with verifiable problems!
  • 1 reply
ยท