Prompt : Using HTML, CSS, and JavaScript in a single HTML file to create a simulation of the solar system. Pay extreme attention to the UI to make it as intuitive as possible. Ensure that every planet appears as a sphere and is labeled with its corresponding name.
📝ChemQwen-vL is a vision-language model fine-tuned based on the Qwen2VL-2B Instruct model. It has been trained using the International Chemical Identifier (InChI) format for chemical compounds and is optimized for chemical compound identification. The model excels at generating the InChI and providing descriptions of chemical compounds based on their images. Its architecture operates within a multi-modal framework, combining image-text-text capabilities. It has been fine-tuned using datasets from: https://iupac.org/projects/
🙋🏻♂️Hey there folks , Open LLM Europe just released Lucie 7B-Instruct model , a billingual instruct model trained on open data ! You can check out my unofficial demo here while we wait for the official inference api from the group : Tonic/Lucie-7B hope you like it 🚀
❤️🔥Stranger Zone's MidJourney Mix Model Adapter is trending on the Very Model Page, with over 45,000+ downloads. Additionally, the Super Realism Model Adapter has over 52,000+ downloads, remains the top two adapter on Stranger Zone! strangerzonehf/Flux-Midjourney-Mix2-LoRA, strangerzonehf/Flux-Super-Realism-LoRA
🎯Fine-tuning SmolLM2 on a lightweight synthetic reasoning dataset for reasoning-specific tasks. Future updates will focus on lightweight, blazing-fast reasoning models. Until then, check out the blog for fine-tuning details.
🎯Triangulum is a collection of pretrained and instruction-tuned generative models, designed for multilingual applications. These models are trained using synthetic datasets based on long chains of thought, enabling them to perform complex reasoning tasks effectively.
🎯The space handles documenting content from the input image along with standardized plain text. It includes adjustment tools with over 30 font styles, file formatting support for PDF and DOCX, textual alignments, font size adjustments, and line spacing modifications.
📄PDFs are rendered using the ReportLab software library toolkit.
🧪The datasets were prepared for a 3:2 aspect ratio by processing images of any dimension (width × height) in alignment with the adapter's concept. This involved using techniques such as magic expand, magic fill, or outpainting to adjust the remaining parts of the image to achieve the 3:2 ratio & posts training. This approach enhanced the desired image quality to up to 2 MB for detailed prompts and reduced artifacts in images sized at 1280 × 832.
🎈This approach was used instead of cropping down the 2x or 3x zoomed positions in the actual image. It generative filling to adjust the image's aspect ratio proportionally within the dataset.
🔧I used Canva's Magic Expand, Firefly's Generative Fill, and Flux's Outpaint for aspect ratio adjustments.
(P1, P2): P2 has a shorter survival time and a higher risk score → Concordant ✅ (P1, P3): P3 has a longer survival time and a lower risk score → Concordant ✅ (P2, P3): P3 has a longer survival time and a lower risk score → Concordant ✅ Total pairs = 3 Total concordant pairs = 3
C-index for Group A = Concordant pairs/Total pairs= 3/3 = 1.0
Step 2: Calculate C-index for All Groups Repeat the process for all groups. For now we can assume:
Group A: C-index = 1.0 Group B: C-index = 0.8 Group C: C-index = 0.6 Step 3: Stratified Concordance Index The Stratified Concordance Index combines the C-index scores of all groups and focusing on the following:
Average performance across groups (mean of C-indices). Consistency across groups (low standard deviation of C-indices). Formula: Stratified C-index = Mean(C-index scores) - Standard Deviation(C-index scores)
Calculate the mean: Mean=1.0 + 0.8 + 0.6/3 = 0.8
Calculate the standard deviation: Standard Deviation= sqrt((1.0-0.8)^2 + (0.8-0.8)^2 + (0.6-0.8)^/3) = 0.16
Fine-Textured [Polygon] Character 3D Design Renders 🙉
Adapters capable of providing better lighting control (Bn+, Bn-) and richer textures compared to previous sets require more contextual prompts for optimal performance.
The ideal settings are achieved at inference steps around 30–35, with the best dimensions being 1280 x 832 [ 3:2 ]. However, it also performs well with the default settings of 1024 x 1024 [ 1:1 ].