See axolotl config
axolotl version: 0.6.0
base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
# optionally might have model_type or tokenizer_type
# model_type: AutoModelForCausalLM
# tokenizer_type: AutoTokenizer
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name
trust_remote_code: true
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: length_human_train.jsonl
type: alpaca
dataset_prepared_path:
val_set_size: 0.05
output_dir: /data/user_data/jiewenh/saved_models/DeepSeek-R1-Distill-Qwen-1.5B_test
sequence_len: 2048
sample_packing: false
pad_to_sequence_len:
adapter: qlora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project: "DeepSeek-R1-Distill-Qwen-1.5B_test"
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 2
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention:
warmup_steps: 10
evals_per_epoch: 0
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
data/user_data/jiewenh/saved_models/DeepSeek-R1-Distill-Qwen-1.5B_test
This model is a fine-tuned version of deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B on the length_human_train.jsonl dataset. It achieves the following results on the evaluation set:
- Loss: 0.2914
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.1058 | 0.9996 | 1379 | 0.2914 |
Framework versions
- PEFT 0.14.0
- Transformers 4.47.1
- Pytorch 2.5.1
- Datasets 3.1.0
- Tokenizers 0.21.0
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for nutPace/Improver-DeepSeek-R1-Distill-Qwen-1.5B
Base model
deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B