whisper-omg-2 / README.md
nurzhanit's picture
End of training
b9c43a7 verified
|
raw
history blame
3.04 kB
metadata
language:
  - hi
base_model: nurzhanit/whisper-enhanced-ml
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper Small Hi - Sanchit Gandhi
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: default
          split: None
          args: 'config: hi, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 0.18583042973286876

Whisper Small Hi - Sanchit Gandhi

This model is a fine-tuned version of nurzhanit/whisper-enhanced-ml on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0001
  • Wer: 0.1858

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Wer
0.0142 0.8621 50 0.0076 1.3937
0.0086 1.7241 100 0.0054 1.1614
0.0067 2.5862 150 0.0032 0.5575
0.0032 3.4483 200 0.0019 1.0453
0.0018 4.3103 250 0.0011 0.3252
0.0016 5.1724 300 0.0012 1.3240
0.0024 6.0345 350 0.0007 0.2787
0.0014 6.8966 400 0.0004 0.1858
0.0012 7.7586 450 0.0002 0.1858
0.0003 8.6207 500 0.0003 0.1858
0.0001 9.4828 550 0.0002 0.1858
0.0004 10.3448 600 0.0002 0.1858
0.0001 11.2069 650 0.0002 0.1858
0.0004 12.0690 700 0.0002 0.1858
0.0004 12.9310 750 0.0002 0.1858
0.0002 13.7931 800 0.0002 0.1858
0.0003 14.6552 850 0.0002 0.1858
0.0001 15.5172 900 0.0001 0.1858
0.0001 16.3793 950 0.0001 0.1858
0.0001 17.2414 1000 0.0001 0.1858

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.2
  • Tokenizers 0.19.1