Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: NousResearch/Yarn-Llama-2-7b-64k
bf16: auto
chat_template: llama3
data_processes: 16
dataset_prepared_path: null
datasets:
- data_files:
  - 7561f38348b4dd94_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/7561f38348b4dd94_train_data.json
  type:
    field_input: paragraph
    field_instruction: question
    field_output: answer
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 1
eval_batch_size: 8
eval_max_new_tokens: 128
eval_steps: 25
eval_table_size: null
evals_per_epoch: null
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: nttx/49f9ea13-9f72-4c67-8854-e3231bfec285
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0003
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
  0: 70GB
max_steps: 200
micro_batch_size: 8
mlflow_experiment_name: /tmp/7561f38348b4dd94_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optim_args:
  adam_beta1: 0.9
  adam_beta2: 0.95
  adam_epsilon: 1e-5
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1028
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 50
wandb_entity: null
wandb_mode: online
wandb_name: 49f9ea13-9f72-4c67-8854-e3231bfec285
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 49f9ea13-9f72-4c67-8854-e3231bfec285
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

49f9ea13-9f72-4c67-8854-e3231bfec285

This model is a fine-tuned version of NousResearch/Yarn-Llama-2-7b-64k on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3458

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 200

Training results

Training Loss Epoch Step Validation Loss
13.1308 0.0003 1 3.0255
2.0454 0.0082 25 0.4609
3.3881 0.0163 50 0.4335
1.2915 0.0245 75 0.3901
3.2351 0.0326 100 0.4158
1.7076 0.0408 125 0.3382
2.7244 0.0490 150 0.3343
1.0653 0.0571 175 0.3458

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
0
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for nttx/49f9ea13-9f72-4c67-8854-e3231bfec285

Adapter
(265)
this model