Configuration Parsing Warning: In adapter_config.json: "peft.task_type" must be a string

Whisper Small ko

This model is a fine-tuned version of openai/whisper-large-v3-turbo on the custom dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3702

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 256
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
0.6166 0.0152 10 1.5229
0.61 0.0305 20 1.5096
0.5963 0.0457 30 1.4849
0.5808 0.0610 40 1.4404
0.5214 0.0762 50 1.3605
0.454 0.0915 60 1.1945
0.3241 0.1067 70 0.9397
0.2358 0.1220 80 0.8716
0.2073 0.1372 90 0.8378
0.1861 0.1524 100 0.8180
0.166 0.1677 110 0.8042
0.1701 0.1829 120 0.7758
0.1548 0.1982 130 0.7527
0.148 0.2134 140 0.7342
0.1424 0.2287 150 0.7128
0.127 0.2439 160 0.6991
0.1351 0.2591 170 0.6888
0.1308 0.2744 180 0.6735
0.1195 0.2896 190 0.6621
0.1186 0.3049 200 0.6469
0.1253 0.3201 210 0.6364
0.1327 0.3354 220 0.6234
0.1152 0.3506 230 0.6167
0.1173 0.3659 240 0.6223
0.1306 0.3811 250 0.6200
0.1403 0.3963 260 0.6051
0.1334 0.4116 270 0.6016
0.1104 0.4268 280 0.6046
0.1036 0.4421 290 0.6078
0.11 0.4573 300 0.5971
0.1164 0.4726 310 0.5936
0.1237 0.4878 320 0.5758
0.1011 0.5030 330 0.5697
0.1064 0.5183 340 0.5658
0.1144 0.5335 350 0.5598
0.1081 0.5488 360 0.5563
0.1037 0.5640 370 0.5568
0.1025 0.5793 380 0.5554
0.1042 0.5945 390 0.5421
0.0963 0.6098 400 0.5460
0.119 0.625 410 0.5502
0.1087 0.6402 420 0.5390
0.097 0.6555 430 0.5371
0.1045 0.6707 440 0.5270
0.1103 0.6860 450 0.5291
0.1131 0.7012 460 0.5332
0.1094 0.7165 470 0.5350
0.094 0.7317 480 0.5272
0.1009 0.7470 490 0.5304
0.1026 0.7622 500 0.5223
0.1064 0.7774 510 0.5222
0.1039 0.7927 520 0.5207
0.0973 0.8079 530 0.5219
0.1071 0.8232 540 0.5170
0.1032 0.8384 550 0.5121
0.091 0.8537 560 0.5066
0.0925 0.8689 570 0.5050
0.1068 0.8841 580 0.4918
0.0933 0.8994 590 0.4856
0.0901 0.9146 600 0.4923
0.1019 0.9299 610 0.4861
0.0922 0.9451 620 0.4838
0.1019 0.9604 630 0.4890
0.0926 0.9756 640 0.4790
0.0983 0.9909 650 0.4678
0.103 1.0061 660 0.4683
0.0903 1.0213 670 0.4731
0.0958 1.0366 680 0.4817
0.102 1.0518 690 0.4705
0.0867 1.0671 700 0.4733
0.085 1.0823 710 0.4754
0.0947 1.0976 720 0.4663
0.0924 1.1128 730 0.4697
0.0994 1.1280 740 0.4657
0.0833 1.1433 750 0.4758
0.0857 1.1585 760 0.4703
0.1051 1.1738 770 0.4639
0.108 1.1890 780 0.4609
0.0931 1.2043 790 0.4576
0.0877 1.2195 800 0.4603
0.0902 1.2348 810 0.4602
0.0896 1.25 820 0.4513
0.0881 1.2652 830 0.4500
0.101 1.2805 840 0.4477
0.0962 1.2957 850 0.4470
0.0867 1.3110 860 0.4445
0.1042 1.3262 870 0.4348
0.102 1.3415 880 0.4363
0.0842 1.3567 890 0.4299
0.0931 1.3720 900 0.4317
0.092 1.3872 910 0.4316
0.086 1.4024 920 0.4287
0.0903 1.4177 930 0.4265
0.0896 1.4329 940 0.4286
0.092 1.4482 950 0.4267
0.0841 1.4634 960 0.4279
0.09 1.4787 970 0.4320
0.0749 1.4939 980 0.4284
0.0874 1.5091 990 0.4249
0.0833 1.5244 1000 0.4193
0.0849 1.5396 1010 0.4184
0.0806 1.5549 1020 0.4216
0.0851 1.5701 1030 0.4212
0.0921 1.5854 1040 0.4181
0.0842 1.6006 1050 0.4174
0.0913 1.6159 1060 0.4123
0.0795 1.6311 1070 0.4118
0.094 1.6463 1080 0.4123
0.0771 1.6616 1090 0.4121
0.0922 1.6768 1100 0.4112
0.094 1.6921 1110 0.4129
0.0908 1.7073 1120 0.4062
0.0869 1.7226 1130 0.4097
0.0853 1.7378 1140 0.4081
0.0808 1.7530 1150 0.4119
0.0776 1.7683 1160 0.4073
0.0827 1.7835 1170 0.4116
0.0951 1.7988 1180 0.4104
0.0857 1.8140 1190 0.4102
0.085 1.8293 1200 0.4011
0.083 1.8445 1210 0.4021
0.0838 1.8598 1220 0.4067
0.0793 1.875 1230 0.4079
0.0795 1.8902 1240 0.4052
0.0831 1.9055 1250 0.4014
0.0878 1.9207 1260 0.3989
0.0813 1.9360 1270 0.4017
0.0871 1.9512 1280 0.3992
0.0851 1.9665 1290 0.3976
0.0775 1.9817 1300 0.3955
0.0853 1.9970 1310 0.3942
0.0803 2.0122 1320 0.3986
0.0825 2.0274 1330 0.3933
0.0894 2.0427 1340 0.3937
0.0722 2.0579 1350 0.3944
0.0827 2.0732 1360 0.3992
0.0747 2.0884 1370 0.3948
0.0808 2.1037 1380 0.3963
0.0855 2.1189 1390 0.3932
0.0744 2.1341 1400 0.3947
0.0758 2.1494 1410 0.3953
0.0809 2.1646 1420 0.3971
0.0761 2.1799 1430 0.3908
0.0702 2.1951 1440 0.3924
0.0984 2.2104 1450 0.3937
0.0769 2.2256 1460 0.3953
0.0726 2.2409 1470 0.3954
0.0798 2.2561 1480 0.3915
0.092 2.2713 1490 0.3913
0.0723 2.2866 1500 0.3870
0.0811 2.3018 1510 0.3852
0.0769 2.3171 1520 0.3850
0.0911 2.3323 1530 0.3833
0.0799 2.3476 1540 0.3837
0.0821 2.3628 1550 0.3819
0.0864 2.3780 1560 0.3811
0.0813 2.3933 1570 0.3783
0.0774 2.4085 1580 0.3773
0.0734 2.4238 1590 0.3781
0.0786 2.4390 1600 0.3787
0.0677 2.4543 1610 0.3783
0.077 2.4695 1620 0.3791
0.0824 2.4848 1630 0.3801
0.0806 2.5 1640 0.3796
0.0755 2.5152 1650 0.3817
0.0783 2.5305 1660 0.3778
0.0791 2.5457 1670 0.3770
0.083 2.5610 1680 0.3773
0.0789 2.5762 1690 0.3780
0.0801 2.5915 1700 0.3778
0.0803 2.6067 1710 0.3785
0.0795 2.6220 1720 0.3769
0.073 2.6372 1730 0.3756
0.0838 2.6524 1740 0.3753
0.0715 2.6677 1750 0.3758
0.0839 2.6829 1760 0.3742
0.069 2.6982 1770 0.3726
0.0774 2.7134 1780 0.3730
0.0844 2.7287 1790 0.3732
0.0833 2.7439 1800 0.3724
0.0712 2.7591 1810 0.3712
0.0824 2.7744 1820 0.3715
0.0787 2.7896 1830 0.3717
0.0739 2.8049 1840 0.3711
0.0661 2.8201 1850 0.3709
0.0796 2.8354 1860 0.3710
0.0685 2.8506 1870 0.3707
0.088 2.8659 1880 0.3703
0.0815 2.8811 1890 0.3704
0.0776 2.8963 1900 0.3707
0.0733 2.9116 1910 0.3704
0.0758 2.9268 1920 0.3700
0.0763 2.9421 1930 0.3702
0.0861 2.9573 1940 0.3702
0.0813 2.9726 1950 0.3701
0.0728 2.9878 1960 0.3703
0.076 3.0030 1970 0.3702
0.0773 3.0183 1980 0.3702
0.0827 3.0335 1990 0.3702
0.0825 3.0488 2000 0.3702

Framework versions

  • PEFT 0.14.0
  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
0
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for nomnoos37/stt-turbo-1227-v1.1-peft-eng-2k-rank64-full-test0-1230

Adapter
(49)
this model