Configuration Parsing
Warning:
In adapter_config.json: "peft.task_type" must be a string
Whisper Small ko
This model is a fine-tuned version of openai/whisper-large-v3-turbo on the custom dataset. It achieves the following results on the evaluation set:
- Loss: 0.3702
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 256
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- training_steps: 2000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.6166 | 0.0152 | 10 | 1.5229 |
0.61 | 0.0305 | 20 | 1.5096 |
0.5963 | 0.0457 | 30 | 1.4849 |
0.5808 | 0.0610 | 40 | 1.4404 |
0.5214 | 0.0762 | 50 | 1.3605 |
0.454 | 0.0915 | 60 | 1.1945 |
0.3241 | 0.1067 | 70 | 0.9397 |
0.2358 | 0.1220 | 80 | 0.8716 |
0.2073 | 0.1372 | 90 | 0.8378 |
0.1861 | 0.1524 | 100 | 0.8180 |
0.166 | 0.1677 | 110 | 0.8042 |
0.1701 | 0.1829 | 120 | 0.7758 |
0.1548 | 0.1982 | 130 | 0.7527 |
0.148 | 0.2134 | 140 | 0.7342 |
0.1424 | 0.2287 | 150 | 0.7128 |
0.127 | 0.2439 | 160 | 0.6991 |
0.1351 | 0.2591 | 170 | 0.6888 |
0.1308 | 0.2744 | 180 | 0.6735 |
0.1195 | 0.2896 | 190 | 0.6621 |
0.1186 | 0.3049 | 200 | 0.6469 |
0.1253 | 0.3201 | 210 | 0.6364 |
0.1327 | 0.3354 | 220 | 0.6234 |
0.1152 | 0.3506 | 230 | 0.6167 |
0.1173 | 0.3659 | 240 | 0.6223 |
0.1306 | 0.3811 | 250 | 0.6200 |
0.1403 | 0.3963 | 260 | 0.6051 |
0.1334 | 0.4116 | 270 | 0.6016 |
0.1104 | 0.4268 | 280 | 0.6046 |
0.1036 | 0.4421 | 290 | 0.6078 |
0.11 | 0.4573 | 300 | 0.5971 |
0.1164 | 0.4726 | 310 | 0.5936 |
0.1237 | 0.4878 | 320 | 0.5758 |
0.1011 | 0.5030 | 330 | 0.5697 |
0.1064 | 0.5183 | 340 | 0.5658 |
0.1144 | 0.5335 | 350 | 0.5598 |
0.1081 | 0.5488 | 360 | 0.5563 |
0.1037 | 0.5640 | 370 | 0.5568 |
0.1025 | 0.5793 | 380 | 0.5554 |
0.1042 | 0.5945 | 390 | 0.5421 |
0.0963 | 0.6098 | 400 | 0.5460 |
0.119 | 0.625 | 410 | 0.5502 |
0.1087 | 0.6402 | 420 | 0.5390 |
0.097 | 0.6555 | 430 | 0.5371 |
0.1045 | 0.6707 | 440 | 0.5270 |
0.1103 | 0.6860 | 450 | 0.5291 |
0.1131 | 0.7012 | 460 | 0.5332 |
0.1094 | 0.7165 | 470 | 0.5350 |
0.094 | 0.7317 | 480 | 0.5272 |
0.1009 | 0.7470 | 490 | 0.5304 |
0.1026 | 0.7622 | 500 | 0.5223 |
0.1064 | 0.7774 | 510 | 0.5222 |
0.1039 | 0.7927 | 520 | 0.5207 |
0.0973 | 0.8079 | 530 | 0.5219 |
0.1071 | 0.8232 | 540 | 0.5170 |
0.1032 | 0.8384 | 550 | 0.5121 |
0.091 | 0.8537 | 560 | 0.5066 |
0.0925 | 0.8689 | 570 | 0.5050 |
0.1068 | 0.8841 | 580 | 0.4918 |
0.0933 | 0.8994 | 590 | 0.4856 |
0.0901 | 0.9146 | 600 | 0.4923 |
0.1019 | 0.9299 | 610 | 0.4861 |
0.0922 | 0.9451 | 620 | 0.4838 |
0.1019 | 0.9604 | 630 | 0.4890 |
0.0926 | 0.9756 | 640 | 0.4790 |
0.0983 | 0.9909 | 650 | 0.4678 |
0.103 | 1.0061 | 660 | 0.4683 |
0.0903 | 1.0213 | 670 | 0.4731 |
0.0958 | 1.0366 | 680 | 0.4817 |
0.102 | 1.0518 | 690 | 0.4705 |
0.0867 | 1.0671 | 700 | 0.4733 |
0.085 | 1.0823 | 710 | 0.4754 |
0.0947 | 1.0976 | 720 | 0.4663 |
0.0924 | 1.1128 | 730 | 0.4697 |
0.0994 | 1.1280 | 740 | 0.4657 |
0.0833 | 1.1433 | 750 | 0.4758 |
0.0857 | 1.1585 | 760 | 0.4703 |
0.1051 | 1.1738 | 770 | 0.4639 |
0.108 | 1.1890 | 780 | 0.4609 |
0.0931 | 1.2043 | 790 | 0.4576 |
0.0877 | 1.2195 | 800 | 0.4603 |
0.0902 | 1.2348 | 810 | 0.4602 |
0.0896 | 1.25 | 820 | 0.4513 |
0.0881 | 1.2652 | 830 | 0.4500 |
0.101 | 1.2805 | 840 | 0.4477 |
0.0962 | 1.2957 | 850 | 0.4470 |
0.0867 | 1.3110 | 860 | 0.4445 |
0.1042 | 1.3262 | 870 | 0.4348 |
0.102 | 1.3415 | 880 | 0.4363 |
0.0842 | 1.3567 | 890 | 0.4299 |
0.0931 | 1.3720 | 900 | 0.4317 |
0.092 | 1.3872 | 910 | 0.4316 |
0.086 | 1.4024 | 920 | 0.4287 |
0.0903 | 1.4177 | 930 | 0.4265 |
0.0896 | 1.4329 | 940 | 0.4286 |
0.092 | 1.4482 | 950 | 0.4267 |
0.0841 | 1.4634 | 960 | 0.4279 |
0.09 | 1.4787 | 970 | 0.4320 |
0.0749 | 1.4939 | 980 | 0.4284 |
0.0874 | 1.5091 | 990 | 0.4249 |
0.0833 | 1.5244 | 1000 | 0.4193 |
0.0849 | 1.5396 | 1010 | 0.4184 |
0.0806 | 1.5549 | 1020 | 0.4216 |
0.0851 | 1.5701 | 1030 | 0.4212 |
0.0921 | 1.5854 | 1040 | 0.4181 |
0.0842 | 1.6006 | 1050 | 0.4174 |
0.0913 | 1.6159 | 1060 | 0.4123 |
0.0795 | 1.6311 | 1070 | 0.4118 |
0.094 | 1.6463 | 1080 | 0.4123 |
0.0771 | 1.6616 | 1090 | 0.4121 |
0.0922 | 1.6768 | 1100 | 0.4112 |
0.094 | 1.6921 | 1110 | 0.4129 |
0.0908 | 1.7073 | 1120 | 0.4062 |
0.0869 | 1.7226 | 1130 | 0.4097 |
0.0853 | 1.7378 | 1140 | 0.4081 |
0.0808 | 1.7530 | 1150 | 0.4119 |
0.0776 | 1.7683 | 1160 | 0.4073 |
0.0827 | 1.7835 | 1170 | 0.4116 |
0.0951 | 1.7988 | 1180 | 0.4104 |
0.0857 | 1.8140 | 1190 | 0.4102 |
0.085 | 1.8293 | 1200 | 0.4011 |
0.083 | 1.8445 | 1210 | 0.4021 |
0.0838 | 1.8598 | 1220 | 0.4067 |
0.0793 | 1.875 | 1230 | 0.4079 |
0.0795 | 1.8902 | 1240 | 0.4052 |
0.0831 | 1.9055 | 1250 | 0.4014 |
0.0878 | 1.9207 | 1260 | 0.3989 |
0.0813 | 1.9360 | 1270 | 0.4017 |
0.0871 | 1.9512 | 1280 | 0.3992 |
0.0851 | 1.9665 | 1290 | 0.3976 |
0.0775 | 1.9817 | 1300 | 0.3955 |
0.0853 | 1.9970 | 1310 | 0.3942 |
0.0803 | 2.0122 | 1320 | 0.3986 |
0.0825 | 2.0274 | 1330 | 0.3933 |
0.0894 | 2.0427 | 1340 | 0.3937 |
0.0722 | 2.0579 | 1350 | 0.3944 |
0.0827 | 2.0732 | 1360 | 0.3992 |
0.0747 | 2.0884 | 1370 | 0.3948 |
0.0808 | 2.1037 | 1380 | 0.3963 |
0.0855 | 2.1189 | 1390 | 0.3932 |
0.0744 | 2.1341 | 1400 | 0.3947 |
0.0758 | 2.1494 | 1410 | 0.3953 |
0.0809 | 2.1646 | 1420 | 0.3971 |
0.0761 | 2.1799 | 1430 | 0.3908 |
0.0702 | 2.1951 | 1440 | 0.3924 |
0.0984 | 2.2104 | 1450 | 0.3937 |
0.0769 | 2.2256 | 1460 | 0.3953 |
0.0726 | 2.2409 | 1470 | 0.3954 |
0.0798 | 2.2561 | 1480 | 0.3915 |
0.092 | 2.2713 | 1490 | 0.3913 |
0.0723 | 2.2866 | 1500 | 0.3870 |
0.0811 | 2.3018 | 1510 | 0.3852 |
0.0769 | 2.3171 | 1520 | 0.3850 |
0.0911 | 2.3323 | 1530 | 0.3833 |
0.0799 | 2.3476 | 1540 | 0.3837 |
0.0821 | 2.3628 | 1550 | 0.3819 |
0.0864 | 2.3780 | 1560 | 0.3811 |
0.0813 | 2.3933 | 1570 | 0.3783 |
0.0774 | 2.4085 | 1580 | 0.3773 |
0.0734 | 2.4238 | 1590 | 0.3781 |
0.0786 | 2.4390 | 1600 | 0.3787 |
0.0677 | 2.4543 | 1610 | 0.3783 |
0.077 | 2.4695 | 1620 | 0.3791 |
0.0824 | 2.4848 | 1630 | 0.3801 |
0.0806 | 2.5 | 1640 | 0.3796 |
0.0755 | 2.5152 | 1650 | 0.3817 |
0.0783 | 2.5305 | 1660 | 0.3778 |
0.0791 | 2.5457 | 1670 | 0.3770 |
0.083 | 2.5610 | 1680 | 0.3773 |
0.0789 | 2.5762 | 1690 | 0.3780 |
0.0801 | 2.5915 | 1700 | 0.3778 |
0.0803 | 2.6067 | 1710 | 0.3785 |
0.0795 | 2.6220 | 1720 | 0.3769 |
0.073 | 2.6372 | 1730 | 0.3756 |
0.0838 | 2.6524 | 1740 | 0.3753 |
0.0715 | 2.6677 | 1750 | 0.3758 |
0.0839 | 2.6829 | 1760 | 0.3742 |
0.069 | 2.6982 | 1770 | 0.3726 |
0.0774 | 2.7134 | 1780 | 0.3730 |
0.0844 | 2.7287 | 1790 | 0.3732 |
0.0833 | 2.7439 | 1800 | 0.3724 |
0.0712 | 2.7591 | 1810 | 0.3712 |
0.0824 | 2.7744 | 1820 | 0.3715 |
0.0787 | 2.7896 | 1830 | 0.3717 |
0.0739 | 2.8049 | 1840 | 0.3711 |
0.0661 | 2.8201 | 1850 | 0.3709 |
0.0796 | 2.8354 | 1860 | 0.3710 |
0.0685 | 2.8506 | 1870 | 0.3707 |
0.088 | 2.8659 | 1880 | 0.3703 |
0.0815 | 2.8811 | 1890 | 0.3704 |
0.0776 | 2.8963 | 1900 | 0.3707 |
0.0733 | 2.9116 | 1910 | 0.3704 |
0.0758 | 2.9268 | 1920 | 0.3700 |
0.0763 | 2.9421 | 1930 | 0.3702 |
0.0861 | 2.9573 | 1940 | 0.3702 |
0.0813 | 2.9726 | 1950 | 0.3701 |
0.0728 | 2.9878 | 1960 | 0.3703 |
0.076 | 3.0030 | 1970 | 0.3702 |
0.0773 | 3.0183 | 1980 | 0.3702 |
0.0827 | 3.0335 | 1990 | 0.3702 |
0.0825 | 3.0488 | 2000 | 0.3702 |
Framework versions
- PEFT 0.14.0
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.