detr-finetuned-cppe-5-10k-steps
This model is a fine-tuned version of facebook/detr-resnet-50 on the cppe-5 dataset. It achieves the following results on the evaluation set:
- Loss: 1.6932
- Map: 0.1289
- Map 50: 0.2606
- Map 75: 0.1098
- Map Small: 0.0355
- Map Medium: 0.1082
- Map Large: 0.1676
- Mar 1: 0.1429
- Mar 10: 0.2628
- Mar 100: 0.2869
- Mar Small: 0.1256
- Mar Medium: 0.2299
- Mar Large: 0.3635
- Map Coverall: 0.399
- Mar 100 Coverall: 0.6383
- Map Face Shield: 0.0257
- Mar 100 Face Shield: 0.1557
- Map Gloves: 0.0535
- Mar 100 Gloves: 0.2772
- Map Goggles: 0.0002
- Mar 100 Goggles: 0.0031
- Map Mask: 0.166
- Mar 100 Mask: 0.36
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Coverall | Mar 100 Coverall | Map Face Shield | Mar 100 Face Shield | Map Gloves | Mar 100 Gloves | Map Goggles | Mar 100 Goggles | Map Mask | Mar 100 Mask |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2.6856 | 1.0 | 107 | 2.4604 | 0.0152 | 0.0396 | 0.0096 | 0.0051 | 0.0048 | 0.0234 | 0.0535 | 0.1109 | 0.1286 | 0.0401 | 0.089 | 0.1752 | 0.0622 | 0.3509 | 0.0 | 0.0 | 0.0045 | 0.1174 | 0.0 | 0.0 | 0.0092 | 0.1747 |
2.1242 | 2.0 | 214 | 2.1711 | 0.0464 | 0.1115 | 0.033 | 0.01 | 0.0466 | 0.0621 | 0.0776 | 0.1595 | 0.1801 | 0.0647 | 0.1406 | 0.2105 | 0.1861 | 0.5176 | 0.0 | 0.0 | 0.0139 | 0.1437 | 0.0 | 0.0 | 0.0317 | 0.2391 |
1.9759 | 3.0 | 321 | 2.0671 | 0.0662 | 0.1477 | 0.053 | 0.0129 | 0.0709 | 0.0846 | 0.0964 | 0.1814 | 0.199 | 0.057 | 0.1639 | 0.2279 | 0.2207 | 0.5608 | 0.0 | 0.0 | 0.0222 | 0.1688 | 0.0 | 0.0 | 0.0881 | 0.2653 |
1.8435 | 4.0 | 428 | 1.9923 | 0.084 | 0.1759 | 0.0717 | 0.0156 | 0.0673 | 0.1068 | 0.1017 | 0.1929 | 0.2119 | 0.0717 | 0.1646 | 0.2621 | 0.2915 | 0.5856 | 0.0 | 0.0 | 0.0302 | 0.1835 | 0.0 | 0.0 | 0.0982 | 0.2907 |
1.7693 | 5.0 | 535 | 1.9163 | 0.0851 | 0.181 | 0.0718 | 0.0201 | 0.0721 | 0.1072 | 0.1005 | 0.1956 | 0.2137 | 0.0924 | 0.1684 | 0.2556 | 0.2895 | 0.5559 | 0.004 | 0.0063 | 0.0256 | 0.1808 | 0.0 | 0.0 | 0.1064 | 0.3253 |
1.6961 | 6.0 | 642 | 1.8520 | 0.1045 | 0.2193 | 0.0909 | 0.0529 | 0.0938 | 0.133 | 0.1183 | 0.2171 | 0.2416 | 0.1111 | 0.2093 | 0.2975 | 0.3181 | 0.5748 | 0.0062 | 0.0329 | 0.0432 | 0.2598 | 0.0 | 0.0 | 0.1549 | 0.3404 |
1.6116 | 7.0 | 749 | 1.7836 | 0.1118 | 0.2368 | 0.089 | 0.0334 | 0.0935 | 0.1543 | 0.1308 | 0.2439 | 0.2684 | 0.1294 | 0.2151 | 0.3409 | 0.3489 | 0.6059 | 0.0081 | 0.1165 | 0.0517 | 0.2888 | 0.0 | 0.0 | 0.1503 | 0.3307 |
1.5518 | 8.0 | 856 | 1.7223 | 0.1235 | 0.2558 | 0.1096 | 0.0336 | 0.1039 | 0.1553 | 0.135 | 0.2555 | 0.2765 | 0.1211 | 0.2311 | 0.3411 | 0.3847 | 0.6203 | 0.0237 | 0.1494 | 0.0556 | 0.2661 | 0.0001 | 0.0015 | 0.1537 | 0.3453 |
1.5112 | 9.0 | 963 | 1.6986 | 0.1268 | 0.2639 | 0.1029 | 0.0318 | 0.1025 | 0.1676 | 0.1444 | 0.2626 | 0.2864 | 0.1204 | 0.2328 | 0.3611 | 0.3928 | 0.6392 | 0.0274 | 0.157 | 0.0536 | 0.2741 | 0.0012 | 0.0062 | 0.1591 | 0.3556 |
1.4924 | 10.0 | 1070 | 1.6932 | 0.1289 | 0.2606 | 0.1098 | 0.0355 | 0.1082 | 0.1676 | 0.1429 | 0.2628 | 0.2869 | 0.1256 | 0.2299 | 0.3635 | 0.399 | 0.6383 | 0.0257 | 0.1557 | 0.0535 | 0.2772 | 0.0002 | 0.0031 | 0.166 | 0.36 |
Framework versions
- Transformers 4.42.4
- Pytorch 1.13.1+cu117
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for niujiahui/detr-finetuned-cppe-5-10k-steps
Base model
facebook/detr-resnet-50