detr-finetuned-cppe-5-10k-steps

This model is a fine-tuned version of facebook/detr-resnet-50 on the cppe-5 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6932
  • Map: 0.1289
  • Map 50: 0.2606
  • Map 75: 0.1098
  • Map Small: 0.0355
  • Map Medium: 0.1082
  • Map Large: 0.1676
  • Mar 1: 0.1429
  • Mar 10: 0.2628
  • Mar 100: 0.2869
  • Mar Small: 0.1256
  • Mar Medium: 0.2299
  • Mar Large: 0.3635
  • Map Coverall: 0.399
  • Mar 100 Coverall: 0.6383
  • Map Face Shield: 0.0257
  • Mar 100 Face Shield: 0.1557
  • Map Gloves: 0.0535
  • Mar 100 Gloves: 0.2772
  • Map Goggles: 0.0002
  • Mar 100 Goggles: 0.0031
  • Map Mask: 0.166
  • Mar 100 Mask: 0.36

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 1337
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Small Map Medium Map Large Mar 1 Mar 10 Mar 100 Mar Small Mar Medium Mar Large Map Coverall Mar 100 Coverall Map Face Shield Mar 100 Face Shield Map Gloves Mar 100 Gloves Map Goggles Mar 100 Goggles Map Mask Mar 100 Mask
2.6856 1.0 107 2.4604 0.0152 0.0396 0.0096 0.0051 0.0048 0.0234 0.0535 0.1109 0.1286 0.0401 0.089 0.1752 0.0622 0.3509 0.0 0.0 0.0045 0.1174 0.0 0.0 0.0092 0.1747
2.1242 2.0 214 2.1711 0.0464 0.1115 0.033 0.01 0.0466 0.0621 0.0776 0.1595 0.1801 0.0647 0.1406 0.2105 0.1861 0.5176 0.0 0.0 0.0139 0.1437 0.0 0.0 0.0317 0.2391
1.9759 3.0 321 2.0671 0.0662 0.1477 0.053 0.0129 0.0709 0.0846 0.0964 0.1814 0.199 0.057 0.1639 0.2279 0.2207 0.5608 0.0 0.0 0.0222 0.1688 0.0 0.0 0.0881 0.2653
1.8435 4.0 428 1.9923 0.084 0.1759 0.0717 0.0156 0.0673 0.1068 0.1017 0.1929 0.2119 0.0717 0.1646 0.2621 0.2915 0.5856 0.0 0.0 0.0302 0.1835 0.0 0.0 0.0982 0.2907
1.7693 5.0 535 1.9163 0.0851 0.181 0.0718 0.0201 0.0721 0.1072 0.1005 0.1956 0.2137 0.0924 0.1684 0.2556 0.2895 0.5559 0.004 0.0063 0.0256 0.1808 0.0 0.0 0.1064 0.3253
1.6961 6.0 642 1.8520 0.1045 0.2193 0.0909 0.0529 0.0938 0.133 0.1183 0.2171 0.2416 0.1111 0.2093 0.2975 0.3181 0.5748 0.0062 0.0329 0.0432 0.2598 0.0 0.0 0.1549 0.3404
1.6116 7.0 749 1.7836 0.1118 0.2368 0.089 0.0334 0.0935 0.1543 0.1308 0.2439 0.2684 0.1294 0.2151 0.3409 0.3489 0.6059 0.0081 0.1165 0.0517 0.2888 0.0 0.0 0.1503 0.3307
1.5518 8.0 856 1.7223 0.1235 0.2558 0.1096 0.0336 0.1039 0.1553 0.135 0.2555 0.2765 0.1211 0.2311 0.3411 0.3847 0.6203 0.0237 0.1494 0.0556 0.2661 0.0001 0.0015 0.1537 0.3453
1.5112 9.0 963 1.6986 0.1268 0.2639 0.1029 0.0318 0.1025 0.1676 0.1444 0.2626 0.2864 0.1204 0.2328 0.3611 0.3928 0.6392 0.0274 0.157 0.0536 0.2741 0.0012 0.0062 0.1591 0.3556
1.4924 10.0 1070 1.6932 0.1289 0.2606 0.1098 0.0355 0.1082 0.1676 0.1429 0.2628 0.2869 0.1256 0.2299 0.3635 0.399 0.6383 0.0257 0.1557 0.0535 0.2772 0.0002 0.0031 0.166 0.36

Framework versions

  • Transformers 4.42.4
  • Pytorch 1.13.1+cu117
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
6
Safetensors
Model size
41.6M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for niujiahui/detr-finetuned-cppe-5-10k-steps

Finetuned
(468)
this model