metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- webdataset
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: vit-base-patch16-224-in21k-v2025-1-31
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: webdataset
type: webdataset
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8972972972972973
- name: F1
type: f1
value: 0.7667958656330749
- name: Precision
type: precision
value: 0.7866136514247847
- name: Recall
type: recall
value: 0.7479521109010712
vit-base-patch16-224-in21k-v2025-1-31
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the webdataset dataset. It achieves the following results on the evaluation set:
- Loss: 0.3391
- Accuracy: 0.8973
- F1: 0.7668
- Precision: 0.7866
- Recall: 0.7480
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.4871 | 0.5682 | 100 | 0.4866 | 0.7903 | 0.1400 | 0.9449 | 0.0756 |
0.4151 | 1.1364 | 200 | 0.4007 | 0.8361 | 0.4540 | 0.9159 | 0.3018 |
0.3517 | 1.7045 | 300 | 0.3460 | 0.8671 | 0.6481 | 0.8060 | 0.5419 |
0.3337 | 2.2727 | 400 | 0.3202 | 0.8777 | 0.7034 | 0.7768 | 0.6427 |
0.3128 | 2.8409 | 500 | 0.2995 | 0.8774 | 0.6943 | 0.7940 | 0.6169 |
0.3199 | 3.4091 | 600 | 0.2980 | 0.8771 | 0.6960 | 0.7880 | 0.6232 |
0.3094 | 3.9773 | 700 | 0.3051 | 0.8764 | 0.7031 | 0.7679 | 0.6484 |
0.3068 | 4.5455 | 800 | 0.2753 | 0.8900 | 0.7409 | 0.7915 | 0.6963 |
0.3003 | 5.1136 | 900 | 0.2699 | 0.8890 | 0.7351 | 0.7973 | 0.6818 |
0.3012 | 5.6818 | 1000 | 0.2860 | 0.8799 | 0.7256 | 0.7495 | 0.7032 |
0.267 | 6.25 | 1100 | 0.2848 | 0.8832 | 0.7216 | 0.7812 | 0.6704 |
0.2364 | 6.8182 | 1200 | 0.2608 | 0.8896 | 0.7399 | 0.7903 | 0.6957 |
0.2401 | 7.3864 | 1300 | 0.2695 | 0.8885 | 0.7406 | 0.7798 | 0.7051 |
0.219 | 7.9545 | 1400 | 0.2599 | 0.8909 | 0.7413 | 0.7975 | 0.6925 |
0.1985 | 8.5227 | 1500 | 0.2668 | 0.8898 | 0.7421 | 0.7863 | 0.7026 |
0.1986 | 9.0909 | 1600 | 0.2762 | 0.8851 | 0.7316 | 0.7737 | 0.6938 |
0.1988 | 9.6591 | 1700 | 0.2765 | 0.8862 | 0.7404 | 0.7632 | 0.7190 |
0.167 | 10.2273 | 1800 | 0.2630 | 0.8940 | 0.7594 | 0.7788 | 0.7410 |
0.207 | 10.7955 | 1900 | 0.2637 | 0.8923 | 0.7557 | 0.7745 | 0.7379 |
0.1811 | 11.3636 | 2000 | 0.2568 | 0.8946 | 0.7609 | 0.7798 | 0.7429 |
0.171 | 11.9318 | 2100 | 0.2607 | 0.8935 | 0.7527 | 0.7906 | 0.7183 |
0.1571 | 12.5 | 2200 | 0.2552 | 0.8972 | 0.7708 | 0.7755 | 0.7662 |
0.1234 | 13.0682 | 2300 | 0.2676 | 0.8993 | 0.7694 | 0.7964 | 0.7442 |
0.1299 | 13.6364 | 2400 | 0.2683 | 0.8970 | 0.7655 | 0.7875 | 0.7448 |
0.1335 | 14.2045 | 2500 | 0.2823 | 0.8949 | 0.7559 | 0.7944 | 0.7209 |
0.1235 | 14.7727 | 2600 | 0.2753 | 0.8976 | 0.7671 | 0.7880 | 0.7473 |
0.1163 | 15.3409 | 2700 | 0.2884 | 0.8962 | 0.7644 | 0.7836 | 0.7461 |
0.1111 | 15.9091 | 2800 | 0.2770 | 0.8973 | 0.7675 | 0.7847 | 0.7511 |
0.1128 | 16.4773 | 2900 | 0.2773 | 0.8987 | 0.7722 | 0.7843 | 0.7606 |
0.0982 | 17.0455 | 3000 | 0.2754 | 0.8993 | 0.7716 | 0.7905 | 0.7536 |
0.1115 | 17.6136 | 3100 | 0.2956 | 0.8972 | 0.7640 | 0.7927 | 0.7372 |
0.07 | 18.1818 | 3200 | 0.2961 | 0.8977 | 0.7683 | 0.7863 | 0.7511 |
0.0993 | 18.75 | 3300 | 0.3041 | 0.8959 | 0.7639 | 0.7826 | 0.7461 |
0.0779 | 19.3182 | 3400 | 0.3012 | 0.9 | 0.7745 | 0.7889 | 0.7606 |
0.0691 | 19.8864 | 3500 | 0.3075 | 0.8964 | 0.7674 | 0.7784 | 0.7568 |
0.063 | 20.4545 | 3600 | 0.3271 | 0.8912 | 0.7509 | 0.7770 | 0.7265 |
0.0668 | 21.0227 | 3700 | 0.3229 | 0.8952 | 0.7649 | 0.7745 | 0.7555 |
0.0573 | 21.5909 | 3800 | 0.3236 | 0.8960 | 0.7626 | 0.7869 | 0.7398 |
0.0668 | 22.1591 | 3900 | 0.3251 | 0.8972 | 0.7629 | 0.7955 | 0.7328 |
0.062 | 22.7273 | 4000 | 0.3221 | 0.8987 | 0.7702 | 0.7895 | 0.7517 |
0.0647 | 23.2955 | 4100 | 0.3179 | 0.8959 | 0.7663 | 0.7767 | 0.7561 |
0.0417 | 23.8636 | 4200 | 0.3323 | 0.8969 | 0.7662 | 0.7847 | 0.7486 |
0.0623 | 24.4318 | 4300 | 0.3396 | 0.8945 | 0.7602 | 0.7804 | 0.7410 |
0.0361 | 25.0 | 4400 | 0.3418 | 0.8959 | 0.7623 | 0.7863 | 0.7398 |
0.0334 | 25.5682 | 4500 | 0.3404 | 0.8984 | 0.7703 | 0.7870 | 0.7543 |
0.0326 | 26.1364 | 4600 | 0.3376 | 0.8967 | 0.7676 | 0.7801 | 0.7555 |
0.052 | 26.7045 | 4700 | 0.3395 | 0.8972 | 0.7679 | 0.7827 | 0.7536 |
0.0341 | 27.2727 | 4800 | 0.3440 | 0.8953 | 0.7638 | 0.7783 | 0.7498 |
0.0459 | 27.8409 | 4900 | 0.3406 | 0.8980 | 0.7689 | 0.7869 | 0.7517 |
0.0392 | 28.4091 | 5000 | 0.3389 | 0.8977 | 0.7680 | 0.7870 | 0.7498 |
0.0407 | 28.9773 | 5100 | 0.3410 | 0.8976 | 0.7677 | 0.7865 | 0.7498 |
0.0445 | 29.5455 | 5200 | 0.3395 | 0.8969 | 0.7661 | 0.7851 | 0.7480 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0