metadata
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:362208
- loss:ContrastiveLoss
base_model: vinai/phobert-base-v2
datasets: []
widget:
- source_sentence: vùng khí_hậu nóng ẩm ghi_nhận sự tồn_tại của Virus SARS-CoV -2 .
sentences:
- vùng khí_hậu nóng ẩm ghi_nhận sự tồn_tại của Virus SARS-CoV -2 .
- Chế_độ ăn_uống nghỉ_ngơi như_thế_nào là hợp_lý ?
- >-
Và bé đang có tình_trạng bị đọng cặn nước_tiểu ở đầu bộ sinh_dục ( bé
trai ) .
- source_sentence: Khoan xương và chèn vào hai bên hai bong_bóng được gọi là đệm xương .
sentences:
- Khoan xương và chèn vào hai bên hai bong_bóng được gọi là đệm xương .
- >-
3 hôm_nay bé đi phân chủ_yếu là nhầy có bọt rồi nước lẫn hoa_cà_hoa_cải
, thi_thoảng phân có màu xanh đậm .
- >-
Sau khi chẩn_đoán , bác_sĩ khuyên anh Khánh nên sớm điều_trị kịp_thời để
tránh nhiều biến_chứng .
- source_sentence: >-
Những phụ_nữ có tiền_sử bệnh như trên chính là những đối_tượng nguy_cơ của
tình_trạng tắc ống dẫn trứng .
sentences:
- >-
Dùng các thiết_bị hỗ_trợ quá_trình di_chuyển đồng_thời giúp cải_thiện
chức_năng của các khớp như :
- >-
Những phụ_nữ có tiền_sử bệnh như trên chính là những đối_tượng nguy_cơ
của tình_trạng tắc ống dẫn trứng .
- >-
Trong các nguyên_nhân sau đây , đâu là các nguyên_nhân khách_quan ,
không đến từ mẹ và thai_nhi ?
- source_sentence: Bé nhà con nay được 1 tháng 23 ngày .
sentences:
- 'Vú phải : - bất đối_xứng ở vùng dưới ( kích_thước :'
- >-
Thưa bác_sĩ tôi 18 tuổi , bị sưng chân răng , nhức tai , nhức đầu với có
kêu tiếng trong quai_hàm .
- Bé nhà con nay được 1 tháng 23 ngày .
- source_sentence: >-
Tuy_nhiên , nếu bệnh không tự lành và vẫn tiếp_tục chảy_máu , cần phải
sử_dụng các liệu_pháp cầm máu để bù lại lượng máu đã mất .
sentences:
- Nguyễn_Thị_Thanh_Tuyền ( 1995 ) .
- >-
Bệnh_viện Bệnh Nhiệt_đới Trung_ương cơ_sở Kim_Chung là bệnh_viện
khám_chữa bệnh đa_khoa phục_vụ cho người_dân trong cả nước .
- >-
Một_số yếu_tố làm tăng nguy_cơ mắc bệnh như : Yếu_tố nội_tiết : bệnh
thường gặp ở phụ_nữ chậm có kinh và sớm mãn_kinh .
pipeline_tag: sentence-similarity
SentenceTransformer based on vinai/phobert-base-v2
This is a sentence-transformers model finetuned from vinai/phobert-base-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: vinai/phobert-base-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Tuy_nhiên , nếu bệnh không tự lành và vẫn tiếp_tục chảy_máu , cần phải sử_dụng các liệu_pháp cầm máu để bù lại lượng máu đã mất .',
'Một_số yếu_tố làm tăng nguy_cơ mắc bệnh như : Yếu_tố nội_tiết : bệnh thường gặp ở phụ_nữ chậm có kinh và sớm mãn_kinh .',
'Nguyễn_Thị_Thanh_Tuyền ( 1995 ) .',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 362,208 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 3 tokens
- mean: 22.64 tokens
- max: 104 tokens
- min: 3 tokens
- mean: 23.25 tokens
- max: 222 tokens
- min: 0.1
- mean: 0.82
- max: 1.0
- Samples:
sentence_0 sentence_1 label Hiệu_lực của vaccine AstraZeneca ra sao ?
Hiệu_lực của vaccine AstraZeneca ra sao ?
1.0
Gần đây , tôi có quen một bạn gái , mỗi lần ngồi gần nhau có cử_chỉ thân_mật thì tôi gần như không kìm chế được có_thể nói là giống như hiện_tượng xuất_tinh sớm .
Chụp CT scanner sọ não : là hình_ảnh tốt nhất để đánh_giá tổn_thương não vì có_thể hiển_thị mô não hoặc xuất_huyết não hoặc nhũn_não .
0.6540138125419617
Sốt siêu_vi sau quan_hệ tình_dục không an_toàn có phải đã nhiễm HIV không ?
Sốt siêu_vi sau quan_hệ tình_dục không an_toàn có phải đã nhiễm HIV không ?
1.0
- Loss:
ContrastiveLoss
with these parameters:{ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 0.5, "size_average": true }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 4multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falsefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Click to expand
Epoch | Step | Training Loss |
---|---|---|
0.0221 | 500 | 0.0168 |
0.0442 | 1000 | 0.0139 |
0.0663 | 1500 | 0.0142 |
0.0883 | 2000 | 0.0139 |
0.1104 | 2500 | 0.0137 |
0.1325 | 3000 | 0.0139 |
0.1546 | 3500 | 0.0137 |
0.1767 | 4000 | 0.0139 |
0.1988 | 4500 | 0.0136 |
0.2209 | 5000 | 0.0135 |
0.2430 | 5500 | 0.0137 |
0.2650 | 6000 | 0.0138 |
0.2871 | 6500 | 0.0136 |
0.3092 | 7000 | 0.0137 |
0.3313 | 7500 | 0.0138 |
0.3534 | 8000 | 0.0135 |
0.3755 | 8500 | 0.0138 |
0.3976 | 9000 | 0.0138 |
0.4196 | 9500 | 0.0141 |
0.4417 | 10000 | 0.0139 |
0.4638 | 10500 | 0.0139 |
0.4859 | 11000 | 0.0138 |
0.5080 | 11500 | 0.0141 |
0.5301 | 12000 | 0.0138 |
0.5522 | 12500 | 0.0138 |
0.5743 | 13000 | 0.0138 |
0.5963 | 13500 | 0.0138 |
0.6184 | 14000 | 0.0136 |
0.6405 | 14500 | 0.0139 |
0.6626 | 15000 | 0.0151 |
0.6847 | 15500 | 0.019 |
0.7068 | 16000 | 0.0184 |
0.7289 | 16500 | 0.018 |
0.7509 | 17000 | 0.0163 |
0.7730 | 17500 | 0.0164 |
0.7951 | 18000 | 0.0158 |
0.8172 | 18500 | 0.0155 |
0.8393 | 19000 | 0.0151 |
0.8614 | 19500 | 0.0151 |
0.8835 | 20000 | 0.0152 |
0.9056 | 20500 | 0.0152 |
0.9276 | 21000 | 0.0151 |
0.9497 | 21500 | 0.0148 |
0.9718 | 22000 | 0.015 |
0.9939 | 22500 | 0.0147 |
1.0160 | 23000 | 0.0149 |
1.0381 | 23500 | 0.0151 |
1.0602 | 24000 | 0.015 |
1.0823 | 24500 | 0.0148 |
1.1043 | 25000 | 0.0147 |
1.1264 | 25500 | 0.0149 |
1.1485 | 26000 | 0.0147 |
1.1706 | 26500 | 0.015 |
1.1927 | 27000 | 0.0146 |
1.2148 | 27500 | 0.0145 |
1.2369 | 28000 | 0.0147 |
1.2589 | 28500 | 0.0149 |
1.2810 | 29000 | 0.0147 |
1.3031 | 29500 | 0.0144 |
1.3252 | 30000 | 0.0147 |
1.3473 | 30500 | 0.0147 |
1.3694 | 31000 | 0.0145 |
1.3915 | 31500 | 0.0149 |
1.4136 | 32000 | 0.0147 |
1.4356 | 32500 | 0.0148 |
1.4577 | 33000 | 0.0148 |
1.4798 | 33500 | 0.0145 |
1.5019 | 34000 | 0.0149 |
1.5240 | 34500 | 0.0147 |
1.5461 | 35000 | 0.0146 |
1.5682 | 35500 | 0.0144 |
1.5902 | 36000 | 0.0146 |
1.6123 | 36500 | 0.0143 |
1.6344 | 37000 | 0.0145 |
1.6565 | 37500 | 0.0145 |
1.6786 | 38000 | 0.0146 |
1.7007 | 38500 | 0.0143 |
1.7228 | 39000 | 0.0149 |
1.7449 | 39500 | 0.0143 |
1.7669 | 40000 | 0.0146 |
1.7890 | 40500 | 0.0146 |
1.8111 | 41000 | 0.0146 |
1.8332 | 41500 | 0.0142 |
1.8553 | 42000 | 0.0144 |
1.8774 | 42500 | 0.0146 |
1.8995 | 43000 | 0.0147 |
1.9215 | 43500 | 0.0144 |
1.9436 | 44000 | 0.0145 |
1.9657 | 44500 | 0.0143 |
1.9878 | 45000 | 0.0146 |
2.0099 | 45500 | 0.0143 |
2.0320 | 46000 | 0.0147 |
2.0541 | 46500 | 0.0146 |
2.0762 | 47000 | 0.0144 |
2.0982 | 47500 | 0.0144 |
2.1203 | 48000 | 0.0144 |
2.1424 | 48500 | 0.0145 |
2.1645 | 49000 | 0.0144 |
2.1866 | 49500 | 0.0144 |
2.2087 | 50000 | 0.0141 |
2.2308 | 50500 | 0.0142 |
2.2528 | 51000 | 0.0145 |
2.2749 | 51500 | 0.0143 |
2.2970 | 52000 | 0.0141 |
2.3191 | 52500 | 0.0144 |
2.3412 | 53000 | 0.0143 |
2.3633 | 53500 | 0.0144 |
2.3854 | 54000 | 0.0144 |
2.4075 | 54500 | 0.0144 |
2.4295 | 55000 | 0.0145 |
2.4516 | 55500 | 0.0145 |
2.4737 | 56000 | 0.0144 |
2.4958 | 56500 | 0.0147 |
2.5179 | 57000 | 0.0145 |
2.5400 | 57500 | 0.0144 |
2.5621 | 58000 | 0.0143 |
2.5842 | 58500 | 0.0144 |
2.6062 | 59000 | 0.0143 |
2.6283 | 59500 | 0.0142 |
2.6504 | 60000 | 0.0143 |
2.6725 | 60500 | 0.0143 |
2.6946 | 61000 | 0.0143 |
2.7167 | 61500 | 0.0144 |
2.7388 | 62000 | 0.0143 |
2.7608 | 62500 | 0.0143 |
2.7829 | 63000 | 0.0146 |
2.8050 | 63500 | 0.0144 |
2.8271 | 64000 | 0.0141 |
2.8492 | 64500 | 0.0142 |
2.8713 | 65000 | 0.0143 |
2.8934 | 65500 | 0.0146 |
2.9155 | 66000 | 0.0143 |
2.9375 | 66500 | 0.0143 |
2.9596 | 67000 | 0.0141 |
2.9817 | 67500 | 0.0144 |
3.0038 | 68000 | 0.0143 |
3.0259 | 68500 | 0.0145 |
3.0480 | 69000 | 0.0142 |
3.0701 | 69500 | 0.0145 |
3.0921 | 70000 | 0.0142 |
3.1142 | 70500 | 0.0143 |
3.1363 | 71000 | 0.0142 |
3.1584 | 71500 | 0.0143 |
3.1805 | 72000 | 0.0143 |
3.2026 | 72500 | 0.014 |
3.2247 | 73000 | 0.0141 |
3.2468 | 73500 | 0.0142 |
3.2688 | 74000 | 0.0143 |
3.2909 | 74500 | 0.0141 |
3.3130 | 75000 | 0.0141 |
3.3351 | 75500 | 0.0143 |
3.3572 | 76000 | 0.0141 |
3.3793 | 76500 | 0.0143 |
3.4014 | 77000 | 0.0143 |
3.4234 | 77500 | 0.0146 |
3.4455 | 78000 | 0.0144 |
3.4676 | 78500 | 0.0143 |
3.4897 | 79000 | 0.0144 |
3.5118 | 79500 | 0.0145 |
3.5339 | 80000 | 0.0142 |
3.5560 | 80500 | 0.0144 |
3.5781 | 81000 | 0.0143 |
3.6001 | 81500 | 0.0142 |
3.6222 | 82000 | 0.0142 |
3.6443 | 82500 | 0.0142 |
3.6664 | 83000 | 0.014 |
3.6885 | 83500 | 0.0144 |
3.7106 | 84000 | 0.0141 |
3.7327 | 84500 | 0.0143 |
3.7547 | 85000 | 0.014 |
3.7768 | 85500 | 0.0146 |
3.7989 | 86000 | 0.0143 |
3.8210 | 86500 | 0.0142 |
3.8431 | 87000 | 0.0139 |
3.8652 | 87500 | 0.0143 |
3.8873 | 88000 | 0.0144 |
3.9094 | 88500 | 0.0143 |
3.9314 | 89000 | 0.0142 |
3.9535 | 89500 | 0.0142 |
3.9756 | 90000 | 0.0142 |
Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.1.0.dev0
- Transformers: 4.39.3
- PyTorch: 2.1.2
- Accelerate: 0.29.3
- Datasets: 2.18.0
- Tokenizers: 0.15.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
ContrastiveLoss
@inproceedings{hadsell2006dimensionality,
author={Hadsell, R. and Chopra, S. and LeCun, Y.},
booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
title={Dimensionality Reduction by Learning an Invariant Mapping},
year={2006},
volume={2},
number={},
pages={1735-1742},
doi={10.1109/CVPR.2006.100}
}