SpanMarker with roberta-large on FewNERD, CoNLL2003, and OntoNotes v5
This is a SpanMarker model trained on the FewNERD, CoNLL2003, and OntoNotes v5 dataset that can be used for Named Entity Recognition. This SpanMarker model uses roberta-large as the underlying encoder.
Model Details
Model Description
- Model Type: SpanMarker
- Encoder: roberta-large
- Maximum Sequence Length: 256 tokens
- Maximum Entity Length: 8 words
- Training Dataset: FewNERD, CoNLL2003, and OntoNotes v5
- Language: en
- License: cc-by-sa-4.0
Model Sources
- Repository: SpanMarker on GitHub
- Thesis: SpanMarker For Named Entity Recognition
Model Labels
Label | Examples |
---|---|
ORG | "IAEA", "Church 's Chicken", "Texas Chicken" |
Evaluation
Metrics
Label | Precision | Recall | F1 |
---|---|---|---|
ORG | 0.8238 | 0.7970 | 0.81019 |
Uses
Direct Use for Inference
from span_marker import SpanMarkerModel
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("nbroad/span-marker-roberta-large-orgs-v1")
# Run inference
entities = model.predict("The program is classified in the National Collegiate Athletic Association (NCAA) Division I Bowl Subdivision (FBS), and the team competes in the Big 12 Conference.")
Downstream Use
You can finetune this model on your own dataset.
Click to expand
from span_marker import SpanMarkerModel, Trainer
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("nbroad/span-marker-roberta-large-orgs-v1")
# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003
# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
model=model,
train_dataset=dataset["train"],
eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("nbroad/span-marker-roberta-large-orgs-v1-finetuned")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Sentence length | 1 | 23.5706 | 263 |
Entities per sentence | 0 | 0.7865 | 39 |
Training Hyperparameters
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 3
- mixed_precision_training: Native AMP
Training Results
Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy |
---|---|---|---|---|---|---|
0.1430 | 600 | 0.0085 | 0.7425 | 0.7383 | 0.7404 | 0.9726 |
0.2860 | 1200 | 0.0078 | 0.7503 | 0.7516 | 0.7510 | 0.9741 |
0.4290 | 1800 | 0.0077 | 0.6962 | 0.8107 | 0.7491 | 0.9718 |
0.5720 | 2400 | 0.0060 | 0.8074 | 0.7486 | 0.7769 | 0.9753 |
0.7150 | 3000 | 0.0057 | 0.8135 | 0.7717 | 0.7921 | 0.9770 |
0.8580 | 3600 | 0.0059 | 0.7997 | 0.7764 | 0.7879 | 0.9763 |
1.0010 | 4200 | 0.0057 | 0.7860 | 0.8051 | 0.7954 | 0.9771 |
1.1439 | 4800 | 0.0058 | 0.7907 | 0.7717 | 0.7811 | 0.9763 |
1.2869 | 5400 | 0.0058 | 0.8116 | 0.7803 | 0.7956 | 0.9774 |
1.4299 | 6000 | 0.0056 | 0.7918 | 0.7850 | 0.7884 | 0.9770 |
1.5729 | 6600 | 0.0056 | 0.8097 | 0.7837 | 0.7965 | 0.9769 |
1.7159 | 7200 | 0.0055 | 0.8113 | 0.7790 | 0.7948 | 0.9765 |
1.8589 | 7800 | 0.0052 | 0.8095 | 0.7970 | 0.8032 | 0.9782 |
2.0019 | 8400 | 0.0054 | 0.8244 | 0.7782 | 0.8006 | 0.9774 |
2.1449 | 9000 | 0.0053 | 0.8238 | 0.7970 | 0.8102 | 0.9782 |
2.2879 | 9600 | 0.0053 | 0.82 | 0.7901 | 0.8048 | 0.9773 |
2.4309 | 10200 | 0.0053 | 0.8243 | 0.7936 | 0.8086 | 0.9785 |
2.5739 | 10800 | 0.0053 | 0.8159 | 0.7953 | 0.8055 | 0.9781 |
2.7169 | 11400 | 0.0053 | 0.8072 | 0.8034 | 0.8053 | 0.9784 |
2.8599 | 12000 | 0.0052 | 0.8111 | 0.8017 | 0.8064 | 0.9782 |
Framework Versions
- Python: 3.10.12
- SpanMarker: 1.5.0
- Transformers: 4.35.2
- PyTorch: 2.1.0a0+32f93b1
- Datasets: 2.15.0
- Tokenizers: 0.15.0
Citation
BibTeX
@software{Aarsen_SpanMarker,
author = {Aarsen, Tom},
license = {Apache-2.0},
title = {{SpanMarker for Named Entity Recognition}},
url = {https://github.com/tomaarsen/SpanMarkerNER}
}
- Downloads last month
- 16
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for nbroad/span-marker-roberta-large-orgs-v1
Base model
FacebookAI/roberta-largeDataset used to train nbroad/span-marker-roberta-large-orgs-v1
Evaluation results
- F1 on FewNERD, CoNLL2003, and OntoNotes v5test set self-reported0.810
- Precision on FewNERD, CoNLL2003, and OntoNotes v5test set self-reported0.824
- Recall on FewNERD, CoNLL2003, and OntoNotes v5test set self-reported0.797