|
--- |
|
base_model: '' |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: hubert2BertMusic100 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# hubert2BertMusic100 |
|
|
|
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.7855 |
|
- Rouge1: 20.7363 |
|
- Rouge2: 3.2333 |
|
- Rougel: 16.3746 |
|
- Rougelsum: 16.4147 |
|
- Gen Len: 59.07 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| |
|
| 3.3305 | 1.0 | 959 | 3.3111 | 22.9356 | 3.2508 | 17.366 | 17.4075 | 57.61 | |
|
| 2.9292 | 2.0 | 1918 | 3.1469 | 20.9236 | 3.1184 | 16.3203 | 16.3454 | 55.43 | |
|
| 2.7957 | 3.0 | 2877 | 3.0347 | 21.339 | 3.6129 | 16.8758 | 16.8954 | 60.23 | |
|
| 2.7126 | 4.0 | 3836 | 2.9680 | 21.4247 | 3.6279 | 16.5494 | 16.5481 | 59.34 | |
|
| 2.6505 | 5.0 | 4795 | 2.9066 | 21.3352 | 3.0876 | 16.723 | 16.7403 | 58.91 | |
|
| 2.6375 | 6.0 | 5754 | 2.8660 | 21.6979 | 3.2778 | 17.0033 | 17.0018 | 59.94 | |
|
| 2.5865 | 7.0 | 6713 | 2.8287 | 20.2156 | 3.2757 | 16.0352 | 16.0346 | 56.15 | |
|
| 2.5824 | 8.0 | 7672 | 2.8060 | 22.5532 | 3.5368 | 17.4646 | 17.4785 | 60.47 | |
|
| 2.5851 | 9.0 | 8631 | 2.7895 | 20.7575 | 3.0594 | 16.2891 | 16.3196 | 59.13 | |
|
| 2.6084 | 10.0 | 9590 | 2.7855 | 20.7363 | 3.2333 | 16.3746 | 16.4147 | 59.07 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.31.0 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.14.2 |
|
- Tokenizers 0.13.3 |
|
|