mistral-7b-merged-dare-v2

mistral-7b-merged-dare-v2 is a merge of the following models:

🧩 Configuration

models:
  - model: mistralai/Mistral-7B-v0.1
  - model: samir-fama/SamirGPT-v1
    parameters:
      density: 0.53
      weight: 0.4
  - model: abacusai/Slerp-CM-mist-dpo
    parameters:
      density: 0.53
      weight: 0.3
  - model: EmbeddedLLM/Mistral-7B-Merge-14-v0.2
    parameters:
      density: 0.53
      weight: 0.3
  - model: Weyaxi/Einstein-v4-7B
    parameters:
      density: 0.53
      weight: 0.3            
merge_method: dare_ties
base_model: mistralai/Mistral-7B-v0.1
parameters:
  int8_mask: true
dtype: bfloat16

πŸ’» Usage

!pip install -qU transformers bitsandbytes accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "mistral-7b-merged-dare_6x7"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)

messages = [{"role": "user", "content": "Why the sky is blue"}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 73.46
AI2 Reasoning Challenge (25-Shot) 69.62
HellaSwag (10-Shot) 87.04
MMLU (5-Shot) 65.18
TruthfulQA (0-shot) 66.98
Winogrande (5-shot) 80.58
GSM8k (5-shot) 71.34
Downloads last month
43
Safetensors
Model size
7.24B params
Tensor type
BF16
Β·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Collection including mychen76/mistral-7b-merged-dare_6x7