prm800k_mistral_full_1203_re
This model is a fine-tuned version of peiyi9979/math-shepherd-mistral-7b-prm on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.6381
- Accuracy: 0.7273
- Precision: 0.5455
- Recall: 0.2202
- F1: 0.3137
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 4
- seed: 908932403
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.3
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
No log | 0 | 0 | 0.7264 | 0.5221 | 0.3206 | 0.6147 | 0.4214 |
0.4487 | 0.0277 | 100 | 0.5639 | 0.7481 | 0.5882 | 0.3670 | 0.4520 |
0.4543 | 0.0553 | 200 | 0.5885 | 0.7532 | 0.5729 | 0.5046 | 0.5366 |
0.5093 | 0.0830 | 300 | 0.6134 | 0.7247 | 0.5224 | 0.3211 | 0.3977 |
0.4375 | 0.1107 | 400 | 0.5853 | 0.7299 | 0.5385 | 0.3211 | 0.4023 |
0.5172 | 0.1383 | 500 | 0.5865 | 0.7273 | 0.5270 | 0.3578 | 0.4262 |
0.4233 | 0.1660 | 600 | 0.6196 | 0.7091 | 0.4867 | 0.5046 | 0.4955 |
0.4578 | 0.1937 | 700 | 0.7282 | 0.6753 | 0.3667 | 0.2018 | 0.2604 |
0.5126 | 0.2213 | 800 | 0.6442 | 0.7299 | 0.6 | 0.1376 | 0.2239 |
0.497 | 0.2490 | 900 | 0.5881 | 0.7039 | 0.4742 | 0.4220 | 0.4466 |
0.5491 | 0.2767 | 1000 | 0.5973 | 0.7169 | 0.5 | 0.4128 | 0.4523 |
0.443 | 0.3044 | 1100 | 0.6581 | 0.7221 | 0.5333 | 0.1468 | 0.2302 |
0.5123 | 0.3320 | 1200 | 0.6223 | 0.6831 | 0.4330 | 0.3853 | 0.4078 |
0.5508 | 0.3597 | 1300 | 0.6529 | 0.7169 | 0.5 | 0.2018 | 0.2876 |
0.4592 | 0.3874 | 1400 | 0.6542 | 0.7325 | 0.5517 | 0.2936 | 0.3832 |
0.4795 | 0.4150 | 1500 | 0.6218 | 0.7013 | 0.4318 | 0.1743 | 0.2484 |
0.4955 | 0.4427 | 1600 | 0.7782 | 0.7247 | 0.6364 | 0.0642 | 0.1167 |
0.5032 | 0.4704 | 1700 | 0.5619 | 0.7169 | 0.5 | 0.6697 | 0.5725 |
0.5327 | 0.4980 | 1800 | 0.6404 | 0.7299 | 0.5556 | 0.2294 | 0.3247 |
0.508 | 0.5257 | 1900 | 0.6181 | 0.7299 | 0.5352 | 0.3486 | 0.4222 |
0.4908 | 0.5534 | 2000 | 0.6056 | 0.7481 | 0.6071 | 0.3119 | 0.4121 |
0.4834 | 0.5810 | 2100 | 0.6065 | 0.7429 | 0.5758 | 0.3486 | 0.4343 |
0.506 | 0.6087 | 2200 | 0.6348 | 0.7481 | 0.6 | 0.3303 | 0.4260 |
0.4991 | 0.6364 | 2300 | 0.6207 | 0.7506 | 0.6327 | 0.2844 | 0.3924 |
0.3951 | 0.6640 | 2400 | 0.6659 | 0.7221 | 0.5385 | 0.1284 | 0.2074 |
0.4769 | 0.6917 | 2500 | 0.6327 | 0.7143 | 0.4925 | 0.3028 | 0.375 |
0.4661 | 0.7194 | 2600 | 0.6489 | 0.7247 | 0.5306 | 0.2385 | 0.3291 |
0.4985 | 0.7470 | 2700 | 0.6353 | 0.7273 | 0.5435 | 0.2294 | 0.3226 |
0.4713 | 0.7747 | 2800 | 0.6370 | 0.7299 | 0.5455 | 0.2752 | 0.3659 |
0.3479 | 0.8024 | 2900 | 0.6417 | 0.7273 | 0.5333 | 0.2936 | 0.3787 |
0.377 | 0.8300 | 3000 | 0.6435 | 0.7273 | 0.54 | 0.2477 | 0.3396 |
0.4907 | 0.8577 | 3100 | 0.6059 | 0.7221 | 0.5156 | 0.3028 | 0.3815 |
0.3445 | 0.8854 | 3200 | 0.6503 | 0.7351 | 0.5714 | 0.2569 | 0.3544 |
0.4569 | 0.9131 | 3300 | 0.6253 | 0.7221 | 0.5185 | 0.2569 | 0.3436 |
0.3566 | 0.9407 | 3400 | 0.6265 | 0.7247 | 0.5283 | 0.2569 | 0.3457 |
0.3483 | 0.9684 | 3500 | 0.6361 | 0.7247 | 0.5333 | 0.2202 | 0.3117 |
0.4514 | 0.9961 | 3600 | 0.6381 | 0.7273 | 0.5455 | 0.2202 | 0.3137 |
Framework versions
- Transformers 4.46.0
- Pytorch 2.4.0+cu118
- Datasets 3.0.0
- Tokenizers 0.20.1
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for mtzig/prm800k_mistral_full_1203_re
Base model
peiyi9979/math-shepherd-mistral-7b-prm