|
--- |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:574325 |
|
- loss:MultipleNegativesRankingLoss |
|
- loss:CosineSimilarityLoss |
|
base_model: upskyy/gte-base-korean |
|
widget: |
|
- source_sentence: 그것은 도덕적으로 강요하지 않는다. |
|
sentences: |
|
- 그것은 법을 제정하고 있다. |
|
- 시리아 야당은 회담에 참석할 것을 촉구했다. |
|
- 한 젊은이가 기타를 연주하면서 노래를 부르고 있다. |
|
- source_sentence: 한 여성이 무대에서 플루트를 연주하고 있다. |
|
sentences: |
|
- 여자가 플루트를 연주하고 있다. |
|
- 인도, 사이클론 파일린에 대한 적색 경보 발령 |
|
- 반 데르 메르웨는 가이게스의 형을 5년 징역형으로 중지했다. |
|
- source_sentence: 적어도 나는 이 남자가 자신의 범죄를 이해한다고 확신할 수 있었다. |
|
sentences: |
|
- 티셔츠와 반바지를 입고 티에서 축구를 걷어차는 남자 |
|
- 나는 그가 무엇을 잘못했는지 전혀 모른다고 생각하기 시작했다. |
|
- 남자는 자신이 한 일을 알고 있었다. |
|
- source_sentence: 사람은 다리로 올라갑니다. |
|
sentences: |
|
- 한 남자가 땅에 누워 있다. |
|
- 자전거를 타는 한 무리의 사람들이 거리에서 돌아선다. |
|
- 공중으로 뛰어드는 남자 |
|
- source_sentence: 모자를 쓴 남자와 여자가 거리에서 악기를 연주하고 있다. |
|
sentences: |
|
- 사람은 수직 물체에 받쳐진다. |
|
- 두 남자가 길가에 서 있다. |
|
- 두 사람이 모자를 쓰고 있다. |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
model-index: |
|
- name: SentenceTransformer based on upskyy/gte-base-korean |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev |
|
type: sts-dev |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.868140244252358 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8689161244129222 |
|
name: Spearman Cosine |
|
--- |
|
|
|
# SentenceTransformer based on upskyy/gte-base-korean |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [upskyy/gte-base-korean](https://huggingface.co/upskyy/gte-base-korean). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [upskyy/gte-base-korean](https://huggingface.co/upskyy/gte-base-korean) <!-- at revision c1a18ef8326962b57c63e2d306a724a925913dfe --> |
|
- **Maximum Sequence Length:** 8192 tokens |
|
- **Output Dimensionality:** 768 dimensions |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("sentence_transformers_model_id") |
|
# Run inference |
|
sentences = [ |
|
'모자를 쓴 남자와 여자가 거리에서 악기를 연주하고 있다.', |
|
'두 사람이 모자를 쓰고 있다.', |
|
'두 남자가 길가에 서 있다.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
|
|
* Dataset: `sts-dev` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8681 | |
|
| **spearman_cosine** | **0.8689** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Datasets |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 568,576 training samples |
|
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence_0 | sentence_1 | sentence_2 | |
|
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| |
|
| type | string | string | string | |
|
| details | <ul><li>min: 5 tokens</li><li>mean: 19.18 tokens</li><li>max: 111 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 20.1 tokens</li><li>max: 129 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 14.51 tokens</li><li>max: 42 tokens</li></ul> | |
|
* Samples: |
|
| sentence_0 | sentence_1 | sentence_2 | |
|
|:----------------------------------------------------------|:------------------------------------------------------------|:------------------------------------------------| |
|
| <code>나는 솔직히 말해서 가게에서 그것을 산 사람은 그 남자가 아니라고 말할 것이다.</code> | <code>화학자 가게에서 스트리크닌을 산 사람은 그가 아니었다는 것을 인정하겠다.</code> | <code>난 아무것도 인정하지 않을 거야, 이 모든 대화는 무의미해!</code> | |
|
| <code>네 명의 여성이 있다.</code> | <code>검은색과 노란색 드레스를 입은 세 명의 여성과 오렌지색 머리를 가진 한 명의 여성.</code> | <code>신부 들러리 세 명이 모두 어울리지 않는 드레스를 입고 있다.</code> | |
|
| <code>드류는 빤히 쳐다보면서 다른 사람을 생각하고 있었다.</code> | <code>하지만 다른 하나는...... 드류가 빤히 쳐다보았다.</code> | <code>드류는 다른 사람을 걱정하지 않았다.</code> | |
|
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "cos_sim" |
|
} |
|
``` |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 5,749 training samples |
|
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence_0 | sentence_1 | label | |
|
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 4 tokens</li><li>mean: 19.1 tokens</li><li>max: 74 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 19.15 tokens</li><li>max: 83 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.53</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| sentence_0 | sentence_1 | label | |
|
|:---------------------------------------|:--------------------------------------|:-----------------| |
|
| <code>한 남자가 바이올린을 연주하고 있다.</code> | <code>아기가 웃고 기어가고 있다.</code> | <code>0.0</code> | |
|
| <code>구스마오는 동티모르 선거에서 권력을 강화한다.</code> | <code>롬니가 선거에서 승리할 경우 대법원의 가능성</code> | <code>0.0</code> | |
|
| <code>그게 아니었다는 것만 빼면.</code> | <code>그들이 할 수 없다는 것 빼고는...</code> | <code>0.2</code> | |
|
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: |
|
```json |
|
{ |
|
"loss_fct": "torch.nn.modules.loss.MSELoss" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `num_train_epochs`: 1 |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 8 |
|
- `per_device_eval_batch_size`: 8 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 1 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.0 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: None |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | sts-dev_spearman_cosine | |
|
|:------:|:----:|:-------------:|:-----------------------:| |
|
| 0.3477 | 500 | 0.1296 | - | |
|
| 0.6954 | 1000 | 0.1192 | 0.8689 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.11.10 |
|
- Sentence Transformers: 3.3.0 |
|
- Transformers: 4.46.2 |
|
- PyTorch: 2.4.0+cu121 |
|
- Accelerate: 1.1.1 |
|
- Datasets: 3.1.0 |
|
- Tokenizers: 0.20.3 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |