DeBERTa v3 (small) fine-tuned on SST2
This model is a fine-tuned version of microsoft/deberta-v3-small on the GLUE SST2 dataset. It achieves the following results on the evaluation set:
- Loss: 0.2134
- Accuracy: 0.9404
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.176 | 1.0 | 4210 | 0.2134 | 0.9404 |
0.1254 | 2.0 | 8420 | 0.2362 | 0.9415 |
0.0957 | 3.0 | 12630 | 0.3187 | 0.9335 |
0.0673 | 4.0 | 16840 | 0.3039 | 0.9266 |
0.0457 | 5.0 | 21050 | 0.3521 | 0.9312 |
Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.10.0+cu111
- Datasets 1.15.1
- Tokenizers 0.10.3
- Downloads last month
- 548
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for mrm8488/deberta-v3-small-finetuned-sst2
Dataset used to train mrm8488/deberta-v3-small-finetuned-sst2
Evaluation results
- Accuracy on GLUE SST2self-reported0.940
- Accuracy on gluevalidation set verified0.940
- Precision on gluevalidation set verified0.938
- Recall on gluevalidation set verified0.946
- AUC on gluevalidation set verified0.980
- F1 on gluevalidation set verified0.942
- loss on gluevalidation set verified0.213