See axolotl config
axolotl version: 0.4.1
adapter: lora
auto_find_batch_size: true
base_model: migtissera/Tess-v2.5-Phi-3-medium-128k-14B
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
- fe297105e697bbbb_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/fe297105e697bbbb_train_data.json
type:
field_instruction: task
field_output: solution
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
early_stopping_threshold: 0.001
eval_max_new_tokens: 128
eval_steps: 40
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: false
hub_model_id: mrferr3t/f42699fe-8a2a-46de-81d3-a4c4af1fea12
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0003
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 100
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 32
mlflow_experiment_name: /tmp/fe297105e697bbbb_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 50
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
s2_attention: null
sample_packing: false
save_steps: 40
saves_per_epoch: 0
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 3fa43a59-7bfe-43c9-93ae-74585476d2fa
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 3fa43a59-7bfe-43c9-93ae-74585476d2fa
warmup_ratio: 0.05
weight_decay: 0.0
xformers_attention: null
f42699fe-8a2a-46de-81d3-a4c4af1fea12
This model is a fine-tuned version of migtissera/Tess-v2.5-Phi-3-medium-128k-14B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5931
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 150
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0010 | 1 | 0.7430 |
No log | 0.0415 | 40 | 0.6771 |
No log | 0.0829 | 80 | 0.6422 |
1.3417 | 0.1244 | 120 | 0.6342 |
1.3417 | 0.1658 | 160 | 0.6263 |
1.2346 | 0.2073 | 200 | 0.6233 |
1.2346 | 0.2487 | 240 | 0.6192 |
1.2346 | 0.2902 | 280 | 0.6167 |
1.2428 | 0.3316 | 320 | 0.6131 |
1.2428 | 0.3731 | 360 | 0.6113 |
1.1918 | 0.4145 | 400 | 0.6059 |
1.1918 | 0.4560 | 440 | 0.6034 |
1.1918 | 0.4974 | 480 | 0.6010 |
1.2162 | 0.5389 | 520 | 0.6008 |
1.2162 | 0.5803 | 560 | 0.5946 |
1.1867 | 0.6218 | 600 | 0.5968 |
1.1867 | 0.6632 | 640 | 0.5912 |
1.1867 | 0.7047 | 680 | 0.5887 |
1.1763 | 0.7461 | 720 | 0.5855 |
1.1763 | 0.7876 | 760 | 0.5841 |
1.1783 | 0.8290 | 800 | 0.5831 |
1.1783 | 0.8705 | 840 | 0.5802 |
1.1783 | 0.9119 | 880 | 0.5773 |
1.1443 | 0.9534 | 920 | 0.5796 |
1.1443 | 0.9948 | 960 | 0.5779 |
1.0328 | 1.0363 | 1000 | 0.5931 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.3.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for mrferr3t/f42699fe-8a2a-46de-81d3-a4c4af1fea12
Base model
microsoft/Phi-3-medium-128k-instruct