Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
auto_find_batch_size: true
base_model: 01-ai/Yi-1.5-9B-Chat-16K
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
  - 7a9b7e93517dd03f_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/7a9b7e93517dd03f_train_data.json
  type:
    field_instruction: prompt
    field_output: chosen
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
early_stopping_threshold: 0.001
eval_max_new_tokens: 128
eval_steps: 40
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: false
hub_model_id: mrferr3t/ef4f4295-87ed-4267-902b-1f09fd90db29
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0003
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 100
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 32
mlflow_experiment_name: /tmp/7a9b7e93517dd03f_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 50
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
s2_attention: null
sample_packing: false
save_steps: 40
saves_per_epoch: 0
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.02
wandb_entity: null
wandb_mode: online
wandb_name: 1600e4aa-9898-4b90-be27-589afaed7e49
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 1600e4aa-9898-4b90-be27-589afaed7e49
warmup_ratio: 0.05
weight_decay: 0.0
xformers_attention: null

ef4f4295-87ed-4267-902b-1f09fd90db29

This model is a fine-tuned version of 01-ai/Yi-1.5-9B-Chat-16K on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2497

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 1570
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss
No log 0.0002 1 1.1487
No log 0.0080 40 1.1022
No log 0.0159 80 0.6008
0.9502 0.0239 120 0.3673
0.9502 0.0318 160 0.3115
0.345 0.0398 200 0.2932
0.345 0.0478 240 0.2880
0.345 0.0557 280 0.2814
0.297 0.0637 320 0.2760
0.297 0.0716 360 0.2711
0.294 0.0796 400 0.2678
0.294 0.0876 440 0.2693
0.294 0.0955 480 0.2652
0.2745 0.1035 520 0.2626
0.2745 0.1115 560 0.2638
0.2658 0.1194 600 0.2579
0.2658 0.1274 640 0.2578
0.2658 0.1353 680 0.2589
0.2691 0.1433 720 0.2555
0.2691 0.1513 760 0.2574
0.2623 0.1592 800 0.2528
0.2623 0.1672 840 0.2527
0.2623 0.1751 880 0.2508
0.2641 0.1831 920 0.2538
0.2641 0.1911 960 0.2561
0.2563 0.1990 1000 0.2477
0.2563 0.2070 1040 0.2579
0.2563 0.2149 1080 0.2607
0.2574 0.2229 1120 0.2497

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.3.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
8
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for mrferr3t/ef4f4295-87ed-4267-902b-1f09fd90db29

Adapter
(338)
this model