See axolotl config
axolotl version: 0.4.1
adapter: lora
auto_find_batch_size: true
base_model: 01-ai/Yi-1.5-9B-Chat-16K
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
- 7a9b7e93517dd03f_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/7a9b7e93517dd03f_train_data.json
type:
field_instruction: prompt
field_output: chosen
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
early_stopping_threshold: 0.001
eval_max_new_tokens: 128
eval_steps: 40
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: false
hub_model_id: mrferr3t/ef4f4295-87ed-4267-902b-1f09fd90db29
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0003
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 100
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 32
mlflow_experiment_name: /tmp/7a9b7e93517dd03f_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 50
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
s2_attention: null
sample_packing: false
save_steps: 40
saves_per_epoch: 0
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.02
wandb_entity: null
wandb_mode: online
wandb_name: 1600e4aa-9898-4b90-be27-589afaed7e49
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 1600e4aa-9898-4b90-be27-589afaed7e49
warmup_ratio: 0.05
weight_decay: 0.0
xformers_attention: null
ef4f4295-87ed-4267-902b-1f09fd90db29
This model is a fine-tuned version of 01-ai/Yi-1.5-9B-Chat-16K on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2497
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1570
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0002 | 1 | 1.1487 |
No log | 0.0080 | 40 | 1.1022 |
No log | 0.0159 | 80 | 0.6008 |
0.9502 | 0.0239 | 120 | 0.3673 |
0.9502 | 0.0318 | 160 | 0.3115 |
0.345 | 0.0398 | 200 | 0.2932 |
0.345 | 0.0478 | 240 | 0.2880 |
0.345 | 0.0557 | 280 | 0.2814 |
0.297 | 0.0637 | 320 | 0.2760 |
0.297 | 0.0716 | 360 | 0.2711 |
0.294 | 0.0796 | 400 | 0.2678 |
0.294 | 0.0876 | 440 | 0.2693 |
0.294 | 0.0955 | 480 | 0.2652 |
0.2745 | 0.1035 | 520 | 0.2626 |
0.2745 | 0.1115 | 560 | 0.2638 |
0.2658 | 0.1194 | 600 | 0.2579 |
0.2658 | 0.1274 | 640 | 0.2578 |
0.2658 | 0.1353 | 680 | 0.2589 |
0.2691 | 0.1433 | 720 | 0.2555 |
0.2691 | 0.1513 | 760 | 0.2574 |
0.2623 | 0.1592 | 800 | 0.2528 |
0.2623 | 0.1672 | 840 | 0.2527 |
0.2623 | 0.1751 | 880 | 0.2508 |
0.2641 | 0.1831 | 920 | 0.2538 |
0.2641 | 0.1911 | 960 | 0.2561 |
0.2563 | 0.1990 | 1000 | 0.2477 |
0.2563 | 0.2070 | 1040 | 0.2579 |
0.2563 | 0.2149 | 1080 | 0.2607 |
0.2574 | 0.2229 | 1120 | 0.2497 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.3.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 8
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for mrferr3t/ef4f4295-87ed-4267-902b-1f09fd90db29
Base model
01-ai/Yi-1.5-9B-Chat-16K