Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
auto_find_batch_size: true
base_model: NousResearch/CodeLlama-7b-hf
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
  - 77f4d29f468bc2c0_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/77f4d29f468bc2c0_train_data.json
  type:
    field_input: input
    field_instruction: instruction
    field_output: response
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
early_stopping_threshold: 0.001
eval_max_new_tokens: 128
eval_steps: 40
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: false
hub_model_id: mrferr3t/ee29425a-d835-495b-8fb5-e11141a51ea1
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0003
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 100
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 32
mlflow_experiment_name: /tmp/77f4d29f468bc2c0_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 50
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
s2_attention: null
sample_packing: false
save_steps: 40
saves_per_epoch: 0
sequence_len: 512
special_tokens:
  pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.02
wandb_entity: null
wandb_mode: online
wandb_name: 48c3c8d8-6645-4a88-adc5-70cd656a2562
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 48c3c8d8-6645-4a88-adc5-70cd656a2562
warmup_ratio: 0.05
weight_decay: 0.0
xformers_attention: null

ee29425a-d835-495b-8fb5-e11141a51ea1

This model is a fine-tuned version of NousResearch/CodeLlama-7b-hf on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6540

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 218
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss
No log 0.0014 1 2.6242
No log 0.0571 40 2.2860
No log 0.1142 80 1.9066
4.9536 0.1713 120 1.7338
4.9536 0.2284 160 1.6253
3.6406 0.2855 200 1.5644
3.6406 0.3426 240 1.4934
3.6406 0.3997 280 1.4442
3.1356 0.4568 320 1.3714
3.1356 0.5139 360 1.3406
2.8521 0.5710 400 1.3140
2.8521 0.6281 440 1.2290
2.8521 0.6852 480 1.1974
2.7573 0.7423 520 1.1788
2.7573 0.7994 560 1.1294
2.3985 0.8565 600 1.1246
2.3985 0.9136 640 1.0637
2.3985 0.9707 680 1.0167
2.2745 1.0278 720 1.0103
2.2745 1.0849 760 0.9873
1.8141 1.1420 800 0.9797
1.8141 1.1991 840 0.9597
1.8141 1.2562 880 0.9458
1.5585 1.3133 920 0.9204
1.5585 1.3704 960 0.9172
1.5745 1.4276 1000 0.9020
1.5745 1.4847 1040 0.8774
1.5745 1.5418 1080 0.8412
1.3623 1.5989 1120 0.8341
1.3623 1.6560 1160 0.8323
1.3262 1.7131 1200 0.7996
1.3262 1.7702 1240 0.8067
1.3262 1.8273 1280 0.7752
1.2514 1.8844 1320 0.7176
1.2514 1.9415 1360 0.7170
1.2277 1.9986 1400 0.7039
1.2277 2.0557 1440 0.7033
1.2277 2.1128 1480 0.7025
0.68 2.1699 1520 0.7079
0.68 2.2270 1560 0.7214
0.809 2.2841 1600 0.6897
0.809 2.3412 1640 0.7047
0.809 2.3983 1680 0.7042
0.7931 2.4554 1720 0.6792
0.7931 2.5125 1760 0.6777
0.6957 2.5696 1800 0.6809
0.6957 2.6267 1840 0.6466
0.6957 2.6838 1880 0.6705
0.7611 2.7409 1920 0.6549
0.7611 2.7980 1960 0.6540

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.3.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
9
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for mrferr3t/ee29425a-d835-495b-8fb5-e11141a51ea1

Adapter
(236)
this model