See axolotl config
axolotl version: 0.4.1
adapter: lora
auto_find_batch_size: true
base_model: NousResearch/CodeLlama-7b-hf
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
- 77f4d29f468bc2c0_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/77f4d29f468bc2c0_train_data.json
type:
field_input: input
field_instruction: instruction
field_output: response
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
early_stopping_threshold: 0.001
eval_max_new_tokens: 128
eval_steps: 40
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: false
hub_model_id: mrferr3t/ee29425a-d835-495b-8fb5-e11141a51ea1
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0003
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 100
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 32
mlflow_experiment_name: /tmp/77f4d29f468bc2c0_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 50
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
s2_attention: null
sample_packing: false
save_steps: 40
saves_per_epoch: 0
sequence_len: 512
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.02
wandb_entity: null
wandb_mode: online
wandb_name: 48c3c8d8-6645-4a88-adc5-70cd656a2562
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 48c3c8d8-6645-4a88-adc5-70cd656a2562
warmup_ratio: 0.05
weight_decay: 0.0
xformers_attention: null
ee29425a-d835-495b-8fb5-e11141a51ea1
This model is a fine-tuned version of NousResearch/CodeLlama-7b-hf on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6540
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 218
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0014 | 1 | 2.6242 |
No log | 0.0571 | 40 | 2.2860 |
No log | 0.1142 | 80 | 1.9066 |
4.9536 | 0.1713 | 120 | 1.7338 |
4.9536 | 0.2284 | 160 | 1.6253 |
3.6406 | 0.2855 | 200 | 1.5644 |
3.6406 | 0.3426 | 240 | 1.4934 |
3.6406 | 0.3997 | 280 | 1.4442 |
3.1356 | 0.4568 | 320 | 1.3714 |
3.1356 | 0.5139 | 360 | 1.3406 |
2.8521 | 0.5710 | 400 | 1.3140 |
2.8521 | 0.6281 | 440 | 1.2290 |
2.8521 | 0.6852 | 480 | 1.1974 |
2.7573 | 0.7423 | 520 | 1.1788 |
2.7573 | 0.7994 | 560 | 1.1294 |
2.3985 | 0.8565 | 600 | 1.1246 |
2.3985 | 0.9136 | 640 | 1.0637 |
2.3985 | 0.9707 | 680 | 1.0167 |
2.2745 | 1.0278 | 720 | 1.0103 |
2.2745 | 1.0849 | 760 | 0.9873 |
1.8141 | 1.1420 | 800 | 0.9797 |
1.8141 | 1.1991 | 840 | 0.9597 |
1.8141 | 1.2562 | 880 | 0.9458 |
1.5585 | 1.3133 | 920 | 0.9204 |
1.5585 | 1.3704 | 960 | 0.9172 |
1.5745 | 1.4276 | 1000 | 0.9020 |
1.5745 | 1.4847 | 1040 | 0.8774 |
1.5745 | 1.5418 | 1080 | 0.8412 |
1.3623 | 1.5989 | 1120 | 0.8341 |
1.3623 | 1.6560 | 1160 | 0.8323 |
1.3262 | 1.7131 | 1200 | 0.7996 |
1.3262 | 1.7702 | 1240 | 0.8067 |
1.3262 | 1.8273 | 1280 | 0.7752 |
1.2514 | 1.8844 | 1320 | 0.7176 |
1.2514 | 1.9415 | 1360 | 0.7170 |
1.2277 | 1.9986 | 1400 | 0.7039 |
1.2277 | 2.0557 | 1440 | 0.7033 |
1.2277 | 2.1128 | 1480 | 0.7025 |
0.68 | 2.1699 | 1520 | 0.7079 |
0.68 | 2.2270 | 1560 | 0.7214 |
0.809 | 2.2841 | 1600 | 0.6897 |
0.809 | 2.3412 | 1640 | 0.7047 |
0.809 | 2.3983 | 1680 | 0.7042 |
0.7931 | 2.4554 | 1720 | 0.6792 |
0.7931 | 2.5125 | 1760 | 0.6777 |
0.6957 | 2.5696 | 1800 | 0.6809 |
0.6957 | 2.6267 | 1840 | 0.6466 |
0.6957 | 2.6838 | 1880 | 0.6705 |
0.7611 | 2.7409 | 1920 | 0.6549 |
0.7611 | 2.7980 | 1960 | 0.6540 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.3.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 9
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for mrferr3t/ee29425a-d835-495b-8fb5-e11141a51ea1
Base model
NousResearch/CodeLlama-7b-hf