See axolotl config
axolotl version: 0.4.1
adapter: lora
auto_find_batch_size: false
base_model: NousResearch/CodeLlama-13b-hf
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
- df148ae60e6052ad_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/df148ae60e6052ad_train_data.json
type:
field_instruction: text
field_output: title
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
early_stopping_threshold: 1.0e-05
eval_max_new_tokens: 128
eval_steps: 216
eval_strategy: null
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 1
gradient_checkpointing: false
group_by_length: false
hub_model_id: mrferr3t/c7b21dba-ac3a-4cd0-ae10-2363fe936b78
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0004
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 216
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps:
micro_batch_size: 2
mlflow_experiment_name: /tmp/df148ae60e6052ad_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 100
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 216
saves_per_epoch: 0
sequence_len: 512
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: .05000000
wandb_entity: null
wandb_mode:
wandb_name: e766b42c-1b28-479c-8415-87cc714ac2f5
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: e766b42c-1b28-479c-8415-87cc714ac2f5
warmup_steps: 100
weight_decay: 0.0
xformers_attention: null
c7b21dba-ac3a-4cd0-ae10-2363fe936b78
This model is a fine-tuned version of NousResearch/CodeLlama-13b-hf on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8765
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0009 | 1 | 3.3609 |
1.4672 | 0.1930 | 216 | 0.8772 |
0.8823 | 0.3861 | 432 | 0.8260 |
0.8829 | 0.5791 | 648 | 0.7717 |
0.8202 | 0.7721 | 864 | 0.6872 |
0.7515 | 0.9651 | 1080 | 0.6267 |
0.576 | 1.1582 | 1296 | 0.7200 |
0.4868 | 1.3512 | 1512 | 0.7308 |
0.5231 | 1.5442 | 1728 | 0.8765 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 9
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for mrferr3t/c7b21dba-ac3a-4cd0-ae10-2363fe936b78
Base model
NousResearch/CodeLlama-13b-hf