Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
auto_find_batch_size: true
base_model: unsloth/tinyllama-chat
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
  - 6f716a15529b2fe2_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/6f716a15529b2fe2_train_data.json
  type:
    field_input: proposition
    field_instruction: instruction
    field_output: response
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
early_stopping_threshold: 0.0001
eval_max_new_tokens: 128
eval_steps: 114
eval_strategy: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: false
hub_model_id: mrferr3t/b2d8d09c-2fec-4b71-97a6-bc2a5685c8f7
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0004
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 114
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 
micro_batch_size: 32
mlflow_experiment_name: /tmp/6f716a15529b2fe2_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 100
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: 
s2_attention: null
sample_packing: false
save_steps: 114
saves_per_epoch: 0
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: 
wandb_name: 4ff326cf-471d-4d59-ae36-92a16644d352
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 4ff326cf-471d-4d59-ae36-92a16644d352
warmup_steps: 100
weight_decay: 0.0
xformers_attention: null

b2d8d09c-2fec-4b71-97a6-bc2a5685c8f7

This model is a fine-tuned version of unsloth/tinyllama-chat on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7085

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0004
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss
No log 0.0004 1 1.2216
1.0283 0.0476 114 0.9294
0.8867 0.0953 228 0.8753
0.8604 0.1429 342 0.8479
0.8315 0.1905 456 0.8264
0.8176 0.2381 570 0.8114
0.7998 0.2858 684 0.7996
0.7906 0.3334 798 0.7886
0.7806 0.3810 912 0.7824
0.777 0.4287 1026 0.7745
0.7707 0.4763 1140 0.7686
0.7659 0.5239 1254 0.7642
0.7638 0.5715 1368 0.7571
0.7561 0.6192 1482 0.7543
0.7521 0.6668 1596 0.7510
0.7468 0.7144 1710 0.7476
0.7471 0.7621 1824 0.7433
0.7413 0.8097 1938 0.7407
0.7385 0.8573 2052 0.7358
0.7286 0.9050 2166 0.7352
0.7323 0.9526 2280 0.7323
0.7328 1.0002 2394 0.7303
0.6772 1.0478 2508 0.7296
0.6772 1.0955 2622 0.7296
0.6746 1.1431 2736 0.7292
0.682 1.1907 2850 0.7256
0.69 1.2384 2964 0.7252
0.6872 1.2860 3078 0.7244
0.6921 1.3336 3192 0.7218
0.6872 1.3812 3306 0.7193
0.686 1.4289 3420 0.7186
0.6857 1.4765 3534 0.7161
0.6834 1.5241 3648 0.7160
0.6831 1.5718 3762 0.7150
0.6892 1.6194 3876 0.7109
0.6778 1.6670 3990 0.7102
0.6772 1.7146 4104 0.7094
0.682 1.7623 4218 0.7086
0.681 1.8099 4332 0.7079
0.6807 1.8575 4446 0.7049
0.6839 1.9052 4560 0.7048
0.6821 1.9528 4674 0.7026
0.6858 2.0004 4788 0.7004
0.6241 2.0480 4902 0.7086
0.6297 2.0957 5016 0.7094
0.6282 2.1433 5130 0.7085

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
2
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for mrferr3t/b2d8d09c-2fec-4b71-97a6-bc2a5685c8f7

Adapter
(305)
this model