See axolotl config
axolotl version: 0.4.1
adapter: lora
auto_find_batch_size: true
base_model: unsloth/tinyllama-chat
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
- 6f716a15529b2fe2_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/6f716a15529b2fe2_train_data.json
type:
field_input: proposition
field_instruction: instruction
field_output: response
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
early_stopping_threshold: 0.0001
eval_max_new_tokens: 128
eval_steps: 114
eval_strategy: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: false
hub_model_id: mrferr3t/b2d8d09c-2fec-4b71-97a6-bc2a5685c8f7
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0004
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 114
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps:
micro_batch_size: 32
mlflow_experiment_name: /tmp/6f716a15529b2fe2_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 100
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint:
s2_attention: null
sample_packing: false
save_steps: 114
saves_per_epoch: 0
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode:
wandb_name: 4ff326cf-471d-4d59-ae36-92a16644d352
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 4ff326cf-471d-4d59-ae36-92a16644d352
warmup_steps: 100
weight_decay: 0.0
xformers_attention: null
b2d8d09c-2fec-4b71-97a6-bc2a5685c8f7
This model is a fine-tuned version of unsloth/tinyllama-chat on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7085
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0004 | 1 | 1.2216 |
1.0283 | 0.0476 | 114 | 0.9294 |
0.8867 | 0.0953 | 228 | 0.8753 |
0.8604 | 0.1429 | 342 | 0.8479 |
0.8315 | 0.1905 | 456 | 0.8264 |
0.8176 | 0.2381 | 570 | 0.8114 |
0.7998 | 0.2858 | 684 | 0.7996 |
0.7906 | 0.3334 | 798 | 0.7886 |
0.7806 | 0.3810 | 912 | 0.7824 |
0.777 | 0.4287 | 1026 | 0.7745 |
0.7707 | 0.4763 | 1140 | 0.7686 |
0.7659 | 0.5239 | 1254 | 0.7642 |
0.7638 | 0.5715 | 1368 | 0.7571 |
0.7561 | 0.6192 | 1482 | 0.7543 |
0.7521 | 0.6668 | 1596 | 0.7510 |
0.7468 | 0.7144 | 1710 | 0.7476 |
0.7471 | 0.7621 | 1824 | 0.7433 |
0.7413 | 0.8097 | 1938 | 0.7407 |
0.7385 | 0.8573 | 2052 | 0.7358 |
0.7286 | 0.9050 | 2166 | 0.7352 |
0.7323 | 0.9526 | 2280 | 0.7323 |
0.7328 | 1.0002 | 2394 | 0.7303 |
0.6772 | 1.0478 | 2508 | 0.7296 |
0.6772 | 1.0955 | 2622 | 0.7296 |
0.6746 | 1.1431 | 2736 | 0.7292 |
0.682 | 1.1907 | 2850 | 0.7256 |
0.69 | 1.2384 | 2964 | 0.7252 |
0.6872 | 1.2860 | 3078 | 0.7244 |
0.6921 | 1.3336 | 3192 | 0.7218 |
0.6872 | 1.3812 | 3306 | 0.7193 |
0.686 | 1.4289 | 3420 | 0.7186 |
0.6857 | 1.4765 | 3534 | 0.7161 |
0.6834 | 1.5241 | 3648 | 0.7160 |
0.6831 | 1.5718 | 3762 | 0.7150 |
0.6892 | 1.6194 | 3876 | 0.7109 |
0.6778 | 1.6670 | 3990 | 0.7102 |
0.6772 | 1.7146 | 4104 | 0.7094 |
0.682 | 1.7623 | 4218 | 0.7086 |
0.681 | 1.8099 | 4332 | 0.7079 |
0.6807 | 1.8575 | 4446 | 0.7049 |
0.6839 | 1.9052 | 4560 | 0.7048 |
0.6821 | 1.9528 | 4674 | 0.7026 |
0.6858 | 2.0004 | 4788 | 0.7004 |
0.6241 | 2.0480 | 4902 | 0.7086 |
0.6297 | 2.0957 | 5016 | 0.7094 |
0.6282 | 2.1433 | 5130 | 0.7085 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for mrferr3t/b2d8d09c-2fec-4b71-97a6-bc2a5685c8f7
Base model
unsloth/tinyllama-chat