metadata
license: llama3.1
language:
- en
pipeline_tag: text-generation
datasets:
- allenai/RLVR-GSM-MATH-IF-Mixed-Constraints
base_model: allenai/Llama-3.1-Tulu-3-8B
library_name: transformers
tags:
- mlx
model-index:
- name: Llama-3.1-Tulu-3-8B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: wis-k/instruction-following-eval
split: train
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 82.55
name: averaged accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=allenai%2FLlama-3.1-Tulu-3-8B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: SaylorTwift/bbh
split: test
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 16.86
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=allenai%2FLlama-3.1-Tulu-3-8B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: lighteval/MATH-Hard
split: test
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 18.88
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=allenai%2FLlama-3.1-Tulu-3-8B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
split: train
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 6.26
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=allenai%2FLlama-3.1-Tulu-3-8B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 10.52
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=allenai%2FLlama-3.1-Tulu-3-8B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 20.23
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=allenai%2FLlama-3.1-Tulu-3-8B
name: Open LLM Leaderboard
moot20/Llama-3.1-Tulu-3-8B-MLX-8bits
The Model moot20/Llama-3.1-Tulu-3-8B-MLX-8bits was converted to MLX format from allenai/Llama-3.1-Tulu-3-8B using mlx-lm version 0.21.1.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("moot20/Llama-3.1-Tulu-3-8B-MLX-8bits")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)