|
--- |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
widget: |
|
- text: 커버형 약통 물티슈박스 2개 위생소품 신생아 오염방지 보관함 출산/육아 > 물티슈 > 물티슈워머/물티슈캡 |
|
- text: 유한 세정 살균 일회용 물 티슈 3종 상품선택_시트러스불렌드 출산/육아 > 물티슈 > 휴대용 |
|
- text: '[비타토 탈부착 물티슈캡] 미니형 물티슈케이스 8컬러 택1 미니 체리핑크 출산/육아 > 물티슈 > 물티슈워머/물티슈캡' |
|
- text: 네이쳐러브메레 건티슈 15매 출산/육아 > 물티슈 > 리필형 |
|
- text: 하트민 업소용물티슈 100T 600매 1매포장물티슈 두꺼운 업소 1회용 식당물티슈 지퍼백포장물티슈_70T 600매 출산/육아 > 물티슈 |
|
> 코인티슈/업소용 |
|
metrics: |
|
- accuracy |
|
pipeline_tag: text-classification |
|
library_name: setfit |
|
inference: true |
|
base_model: mini1013/master_domain |
|
model-index: |
|
- name: SetFit with mini1013/master_domain |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 0.9978378378378379 |
|
name: Accuracy |
|
--- |
|
|
|
# SetFit with mini1013/master_domain |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Number of Classes:** 7 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| 6.0 | <ul><li>'BROWN 프리미엄 옐로우 물티슈 휴대 캡형 20매 출산/육아 > 물티슈 > 휴대용'</li><li>'쪼꼬미 휴대용 물티슈 30팩 미니형 소형 미니 여행용 쪼꼬미물티슈_90팩 출산/육아 > 물티슈 > 휴대용'</li><li>'자연속에 업소용 물티슈 64g(그린) x1 박스(400개) 1매물 음식점 물수건 휴대용 출산/육아 > 물티슈 > 휴대용'</li></ul> | |
|
| 4.0 | <ul><li>'미니무지A 600매 개별포장 대용량 배달용 식당용 업소용 판촉 1회용 일회용 물티슈 출산/육아 > 물티슈 > 코인티슈/업소용'</li><li>'베지터블 압축 코인 티슈 300 코스트코 압축티슈 동전티슈 출산/육아 > 물티슈 > 코인티슈/업소용'</li><li>'하트민 130T 520매 일회용 식당물티슈 업소용 물수건 두툼한 식당용 고급 1회용물티슈 낱개 80g 800매 출산/육아 > 물티슈 > 코인티슈/업소용'</li></ul> | |
|
| 3.0 | <ul><li>'달곰이 노블레스 아기물티슈 크로스엠보싱 72매x10팩 캡형 72매 10팩 캡형 출산/육아 > 물티슈 > 캡형'</li><li>'지크린텍 미엘 클래식 물티슈 캡형 100매 x 10매 캡형 100매 20매 출산/육아 > 물티슈 > 캡형'</li><li>'리꼬베이비 안전한 신생아 유아 대용량 캡형 10팩 20팩 도톰한 두꺼운 아기물티슈 모음전 11.시그니처 70매 10팩 캡 65g 출산/육아 > 물티슈 > 캡형'</li></ul> | |
|
| 1.0 | <ul><li>'설랩수 온천 건티슈 전용 멸균온천수 떼르말 스프링 리필 스틱20ml 출산/육아 > 물티슈 > 리필형'</li><li>'우리집 건티슈 대용량 2.5kg 1500매 대량구매 두툼한원단 플레인 엠보싱 선택1.소프트 건티슈 2.5kg 플레인_1~2박스구매시 1박스가격 출산/육아 > 물티슈 > 리필형'</li><li>'베베솜 무표백 건티슈 순면 신생아건티슈 아기물티슈 리필형 퓨어_10매x15팩(150매) 출산/육아 > 물티슈 > 리필형'</li></ul> | |
|
| 0.0 | <ul><li>'보람씨앤에치 붕어빵 패밀리 비데 물티슈 캡형 50매 10팩 출산/육아 > 물티슈 > 기능성물티슈 > 비데용'</li><li>'유한킴벌리 크리넥스 마이비데 클린케어 물티슈 캡형 46매 x 10팩 + 휴대용 10매 x 3팩 03.밸런스캡40매x5팩+밸런스휴대10매x8팩 출산/육아 > 물티슈 > 기능성물티슈 > 비데용'</li><li>'깨끗한나라 클린 손소독티슈 휴대용 10매 5팩 출산/육아 > 물티슈 > 기능성물티슈 > 손소독용'</li></ul> | |
|
| 5.0 | <ul><li>'오리지널 플레인 휴대용 리필형 30매[12팩] 출산/육아 > 물티슈 > 혼합세트'</li><li>'신상품 물티슈 오리지널 휴대용 30매 출산/육아 > 물티슈 > 혼합세트'</li><li>'(물티슈 100매 모음) 그린터치 더플로라 하늘선물 캡형 리필 (최소 구매 10개) 하늘선물 물티슈 캡형 출산/육아 > 물티슈 > 혼합세트'</li></ul> | |
|
| 2.0 | <ul><li>'아기 물티슈워머 물티슈보온 USB 네모 따뜻한 아기 물티슈워머 물티슈보온 USB 출산/육아 > 물티슈 > 물티슈워머/물티슈캡'</li><li>'베베숲 시그니처 위드블루 캡형 아기물티슈 저자극 70매 20개 70매 20개 출산/육아 > 물티슈 > 물티슈워머/물티슈캡'</li><li>'앙블랑 아기물티슈 민트 캡형 72매 x 10팩 출산/육아 > 물티슈 > 물티슈워머/물티슈캡'</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Accuracy | |
|
|:--------|:---------| |
|
| **all** | 0.9978 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("mini1013/master_cate_bc5") |
|
# Run inference |
|
preds = model("네이쳐러브메레 건티슈 15매 출산/육아 > 물티슈 > 리필형") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:--------|:----| |
|
| Word count | 7 | 15.1388 | 30 | |
|
|
|
| Label | Training Sample Count | |
|
|:------|:----------------------| |
|
| 0.0 | 70 | |
|
| 1.0 | 70 | |
|
| 2.0 | 70 | |
|
| 3.0 | 70 | |
|
| 4.0 | 70 | |
|
| 5.0 | 70 | |
|
| 6.0 | 70 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (256, 256) |
|
- num_epochs: (30, 30) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- num_iterations: 50 |
|
- body_learning_rate: (2e-05, 1e-05) |
|
- head_learning_rate: 0.01 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- l2_weight: 0.01 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:-------:|:----:|:-------------:|:---------------:| |
|
| 0.0104 | 1 | 0.4945 | - | |
|
| 0.5208 | 50 | 0.4632 | - | |
|
| 1.0417 | 100 | 0.2302 | - | |
|
| 1.5625 | 150 | 0.0215 | - | |
|
| 2.0833 | 200 | 0.0003 | - | |
|
| 2.6042 | 250 | 0.0001 | - | |
|
| 3.125 | 300 | 0.0001 | - | |
|
| 3.6458 | 350 | 0.0 | - | |
|
| 4.1667 | 400 | 0.0 | - | |
|
| 4.6875 | 450 | 0.0 | - | |
|
| 5.2083 | 500 | 0.0 | - | |
|
| 5.7292 | 550 | 0.0 | - | |
|
| 6.25 | 600 | 0.0 | - | |
|
| 6.7708 | 650 | 0.0 | - | |
|
| 7.2917 | 700 | 0.0 | - | |
|
| 7.8125 | 750 | 0.0 | - | |
|
| 8.3333 | 800 | 0.0 | - | |
|
| 8.8542 | 850 | 0.0 | - | |
|
| 9.375 | 900 | 0.0 | - | |
|
| 9.8958 | 950 | 0.0 | - | |
|
| 10.4167 | 1000 | 0.0 | - | |
|
| 10.9375 | 1050 | 0.0 | - | |
|
| 11.4583 | 1100 | 0.0 | - | |
|
| 11.9792 | 1150 | 0.0 | - | |
|
| 12.5 | 1200 | 0.0 | - | |
|
| 13.0208 | 1250 | 0.0 | - | |
|
| 13.5417 | 1300 | 0.0 | - | |
|
| 14.0625 | 1350 | 0.0 | - | |
|
| 14.5833 | 1400 | 0.0 | - | |
|
| 15.1042 | 1450 | 0.0 | - | |
|
| 15.625 | 1500 | 0.0 | - | |
|
| 16.1458 | 1550 | 0.0 | - | |
|
| 16.6667 | 1600 | 0.0 | - | |
|
| 17.1875 | 1650 | 0.0 | - | |
|
| 17.7083 | 1700 | 0.0 | - | |
|
| 18.2292 | 1750 | 0.0 | - | |
|
| 18.75 | 1800 | 0.0 | - | |
|
| 19.2708 | 1850 | 0.0 | - | |
|
| 19.7917 | 1900 | 0.0 | - | |
|
| 20.3125 | 1950 | 0.0 | - | |
|
| 20.8333 | 2000 | 0.0 | - | |
|
| 21.3542 | 2050 | 0.0 | - | |
|
| 21.875 | 2100 | 0.0 | - | |
|
| 22.3958 | 2150 | 0.0 | - | |
|
| 22.9167 | 2200 | 0.0 | - | |
|
| 23.4375 | 2250 | 0.0 | - | |
|
| 23.9583 | 2300 | 0.0 | - | |
|
| 24.4792 | 2350 | 0.0 | - | |
|
| 25.0 | 2400 | 0.0 | - | |
|
| 25.5208 | 2450 | 0.0 | - | |
|
| 26.0417 | 2500 | 0.0 | - | |
|
| 26.5625 | 2550 | 0.0 | - | |
|
| 27.0833 | 2600 | 0.0 | - | |
|
| 27.6042 | 2650 | 0.0 | - | |
|
| 28.125 | 2700 | 0.0 | - | |
|
| 28.6458 | 2750 | 0.0 | - | |
|
| 29.1667 | 2800 | 0.0 | - | |
|
| 29.6875 | 2850 | 0.0 | - | |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- SetFit: 1.1.0 |
|
- Sentence Transformers: 3.3.1 |
|
- Transformers: 4.44.2 |
|
- PyTorch: 2.2.0a0+81ea7a4 |
|
- Datasets: 3.2.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |